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FOREWORD

This report was prepared by the Spacecraft Department of the General Electric Missile and

Space Division under Contract NAS 8-20360 on "Derivation of Analytical Methods Which Give

Rapid Convergence to the Solution of Optimized Trajectories" for the George C. Marshall

Space Flight Center of the National Aeronautics and Space Administration. The work was

administered under the technical direction of Resources Managem'ent Office, Aero-Astrody-

namics Laboratory, George C. Marshall Space Flight Center with D. Chandler acting as

project manager.

During the course of the study program,

the sections of this Phase Final Report.

Reports are as follows:
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SECTION 1

GENESIS OF THE PROBLEM

(PARAMETRIC FORM OF THE TWO-FIXED-CENTER PROBLEM}

Although the two-fixed-center problem has been solved in closed form by suitable selection

of the problem coordinates, the restricted three-body problem has not yielded to comparable

solution. Moreover, the classical solution form for the two-fixed-center problem is not

amenable to direct and simple engineering application in feasibility and design studies.

The successful application of the hodograph theory of orbital mechanics to space trajectories

generated in the presence of one force center suggests the possibility of its useful extension

to problems with two force centers. In view of the simpler dynamics (compared with the

restricted three-body problem) and the availability of the classical solution form with two-

fixed-centers, the initial study effort will be directed to hodographic formulation and solu-

tion of this problem statement. The gravitational potentials will be assumed to be spherical

harmonic functions. Also, the analysis will be limited to ballistic trajectories in two-

dimensional space, at this time.

In essence, the hodographic analysis is a specific application of the vector space (or state

space) theory of processes (Reference 1). The ballistic trajectory (or orbit} is defined by

a unique vector locus in each vector space, with geometric transformations relating the

respective trajectory loci (or maps}. That is, a hodograph transformation enables us to map

the trajectory representation in one vector space over into its corresponding rcprescntation

in another vector space, by means of an algebraic function. Moreover, the orbit may be

simply represented in parametric form; for example, with one force center, a conic section

in position vector space, a circle in velocity vector space, or a functional variant of Pascal's

limaqon in acceleration vector space.

1.1 VECTOR SPACE MAPS

Vector space maps for the two-fixed-center problem will be required in a form useful for

synthesis of the desired transform space for solution, and the resulting transforms. Any

new research on a major problem requires knowledge and understanding of the historical or

classical precedents, in order to

1-1
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Identifythe uniqueness or novel form of the new formulation and solutions

Discover analyticclues to a new formulation or its consequent mathematical

reduction

Derive analytic correlation with, and relation to, existing proofs and

demonstrations.

Some of the most useful and immediately available references on classical developments in

the two-fixed-center problem, which will be employed by the research team, are References

2, 3, 4, 5, and 6 which are identified at the end of this section.

At this time, three broad areas of useful information appear available as aids in obtaining

the parametric solution form. For reference in discussion, let us briefly consider the two-

fixed-center solution form presented in References 6 and 3 respectively.

Reference 6 (Whittaker):

(1-2)

where

1-2

gl' P2

2c

h

T

U

_,×

= gravitational constants of the respective force centers

= separation between the force centers, with x-y coordinate

origin at its midpoint

-- orbital energy of the point-mass orbital body

= constant of integration

= auxiliary variable

= elliptic coordinates of the point-mass orbital body
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_-, _C__I_= ,3

Figure I-I.

ORTHOGONAL

HYPERBOLAE

cONFOCAL

ELLIPSES

Elliptic Coordinate Contours in Position Vector Space

Reference 3 {Plummer_.

dTz

clZv

(1-7}

(l-s)
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where

_I' _2 =

20 =

h

dT =

i.e.,J=

and t = time
m

gravitational constants of the respective force centers

separation between the force centers, with x-y coordinate

origin at the midpoint

orbital energy of the point-mass orbital body

dt/J

(i-9)

u, v = conjugate functions of x, y

i.e., x+iy=f(u+iv)

so that

(i-I0)

(1-11, 1-12)

The coordinates (u, v) are identifiable as the elliptic coordinates (_, X), and the auxiliary

variable u is identified with the normalized time variable T.

The result of the integration presented by Equations 1-1 and 1-2 contains two constants

(h, _'). A parametric representation of a trajectory in a vector space requires the presence

of two such parameters. Consequently, these constants are intimately related to the required

parameters in the transform space for the desired parametric solution. Although the physi-

cal interpretation, dimensionality and functional definition of the orbital energy h is well-

known, the comparable description of the constant _' is not available. If such properties of

this second parameter _' were deduced, the results could be valuable in determining the

vector space map of two-fixed-center trajectory in the required transform space.

1-4
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The elliptic coordinates ( _, X) transform the position vector space contours of confocal

ellipses and orthogonal hyperbolae (in (x, y) inertial coordinates) into the Cartesian repre-

sentation; i.e., into a (5, ×) position space, as shown schematically in Figure 1-2. Then

Equations 1-1 and 1-2 would represent the two-fixed-center trajectories in (_, X) velocity

vector space, if we assume that the auxiliary variable u is the time variable t. This repre-

sentation in (_, X) velocity vector space is dimensionally comparable to the hodographic map

of a one-force-center trajectory in (x, y) velocity vector space. Study and analysis of this

(_, X ) map may provide useful information for the development of the required parametric

transformation. Note that Equations 1-7 and 1-8 appear to define a trajectory map which is

closely related to the map in (_', X') acceleration vector space.

The position and velocity vector space maps of realizable (or admissible) periodic orbits of

simple geometric figure can be invaluable in complete study and development of the required

transform space, and its mapping transformations to other vector spaces. In order to ap-

preciate the utility of such data, it is noted that the development of the hodographic transfor-

mations (Reference 7) was accomplished only after definition and study of the Newtonian vec-

tor space maps (i. e., conics, circles and limagon-like figures) and the point-to-point cor-

respondence between these orbital figures. Bonnet's Theorem (see Reference 6) identifies

confocal ellipses and the orthogonal hyperbolae, such as shown in Figure 1-1, as admissible

orbits for the two-fixed-center problem. Consequently, these orbits and other simple geo-

metric figures of orbit (when identifiable) with their respective velocity hodographs will be

studied, as special forms of vector space maps which must be obtainable by means of the

desired transformations. Of course, such transformations would also be required then to

meet additional tests which assure that all admissible orbits are described by their use.

It is observed that the orbits of confocal ellipses and orthogonal hyperbolae are represented

in (_, ×) vector space by lines parallel to the _ and X axes respectively. Consequently, the

velocity paths (of such orbits) in ( _, )() space will lie only on the _ and )_ axes respectively.

1.2 SYNTHESIS OF THE REQUIRED VECTOR SPACE AND TRANSFORM FUNCTIONS

The hodographic study of the two-fixed-center problem requires the development of transfor-

mations which will map the trajectory of any admissible orbit (either periodic or nonperiodic)

1-5
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Figure 1-2. Elliptic Coordinate Transformation
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between any given Newtonian vector spaces (i. e., position, velocity and acceleration). Aside

from the vector space maps which will be obtained for various classes of admissible trajec-

tories, the nature and functional form of the hodograph transformations for one force center

are additional essential clues to the required vector spaces and transform functions for fixed

force centers. Consider the admissible orbits in the Newtonian vector spaces (References 1, 7)

as defined by

(i-14)

and the orbital hodograph transformations

1-7



for these orbits, where

P

C, R

i

x, y, y'

U_ V_ V !

W

q

= the gravitational constant of the one force center

= invariant scalars of the velocity hodograph vectors C, R

-- unit vector of the imaginary coordinate of a complex vector

= real, imaginary and slope coordinates of the orbital

trajectory in position vector space.

-- real, imaginary and slope coordinates of the orbital

trajectory in velocity vector (or potential) space.

= complex (or radius) vector in position vector space

(-z =x+iy)

= complex vector in velocity (or potential) vector space
(---u+iv- Cx+iCy)

= complex vector in acceleration vector space

(=d +id -= x" +i "y')

= arguments of the complex vectors z, w, q respectively

in their vector spaces.

The functional form of the orbital hodograph transformations of Equations 1-16 and 1-17 is

symbolically identified in the suggested tensor form* of the transform moduli:

order of the geometric
.nx er _ .o...

vector space j

\
magnification pedal

*Note that this tensor form of the transform moduli has not been proven as generally valid

for transformation between all Newtonian vector spaces. However, it is valid for the defined

transformations of Equations 1-16 and 1-17 between successive vector spaces of position/

velocity and velocity/acceleration.
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where m = n + 1. It is clear that the hodograph transformation is comprised of the basic

transformation properties of the pedal, geometric inversion and magnification.

The following hypothesis is stated for use in this transformation synthesis:

The orbital hodograph transformations are degenerate (or reduced) forms

of a general form of transformation for n-body vector spaces of orbital dy-

namics.

As a corollary, the general transformation function (with n > 1) will reduce to the corres-

ponding hodograph transform when n = 1. Consequently, the required hodograph transfor-

mation for two fixed force centers will be functionally formed at least with the transform

properties of the pedal, geometric inversion and magnification. However, additional trans-

form properties will be present, which must undergo reduction whenever either of the two

force centers

a. Reduces to zero

b. Recedes to infinity in position vector space or

c. Approaches the other so that the position displacement reduces to zero

(thereby coalescing into one force center).

The additional transform properties, which arise due to the presence of two force centers

rather than only one, must be valid not only for the two-fixed-center problem but also, upon

suitable analytic extension, for the restricted three-body problem. That is, such transform

properties and their specific functional forms must not be limited, by their inherent nature,
ql

to two-dimensionalAspace and position-fixed potential fields. For example, the pedal, geo-

metric inversion, and magnification (such as present in the hodograph transforms) are valid

in three-dimension, as well as two-dimensional space. Consequently, the additional trans-

form properties must enable or admit the compatibility of hodographic solutions with the

classical theorems concerning solutions of the restricted three-body problem; in particular,

Bruns' and Poincar_'s theorems(Reference 6). Although these points will be discussed and

1-9
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analyzed extensively in Work Phase IIB, it is timely to note here, that the conclusions of

Poincar_'s theorem are directed to assumed solution forms (of the trajectory) which are

single-valued functions. The vector space transformation for trajectories subject to more

than one force center will necessarily be a multiple-valued function which maps the single-

valued solution in the transform space into multiple branches in position vector space; only

one of these multiple branches is the valid solution, as identified by the physical (or boundary)

conditions.

The parametric solutions in higher orders of vector space than position vector space require

the use either of translation (w = z +_) or reflection (w = "_)*. Inversion (w = l/z) provides

geometric inversion (operating upon the modulus} and reflection (operating upon the argu-

ment), as illustrated by the following:

I
I

I
I

I

I
I

In complex form,

in polar form,

so that

that is,

_k (I-20A)_ = _-

I

I

= #} • (1-21)

-_x II

= geometric inversion (1-22)

_,]k = reflection.
e (1-23)

I

*Reflection may be taken "in a circle" or "in a straight line"; here, the reflection is defined

as "a reflection in the real axis" only for descriptive purposes.
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Since the hodograph transformation requires geometric inversion, it appears probable that

the additional transform property is reflection, so that the required complete transform will

provide inversion. It is noted that inversion (w = l/z) is a conformal transformation, without

reversion of angles.

I

I
I

I
I

Having decided to initiate transform synthesis with inversion, the coordinates for inversion

must now be considered. That is, inversion can be taken with respect to lines or circles.

Also, the conditions upon the correspondence of the vector space maps, as described pre-

viously, must be fulfilled by the transformation. Upon study of Reference 2, it appears that

the required solution must be a biharmonic function, due to the presence of two force centers.

But every biharmonic function can be expressed by two functions of a complex variable, as

defined by Hurse's formula (Reference 8). This biharmonic characteristic suggests the use

of a transformation which maps circles about the respective force centers, over into circles

about the origin of the required transfo _rm_space, by inversion.

I

I

I

I
I

I

I

Referring to Figure 1-3, it is obvious that each circle in the transform space represents

two circles in the original vector space, one about force center A and the other about force

center B. Consequently the inverse transformation (i. e., from transform to original vector

space) is a multiple-valued function. Also, force centers A and B map over into the "points

at infinity" in the transform space, whereas the "points at infinity" in the original vector

space map over into the transform space origin. The selected coincidence of the concentric

circles transformed from the original space will be determined by the magnification (or iso-

morphism) of the transform. For example, the magnification may be selected so that those

circles (about centers A and B) which represent a given potential V may map over into coin-

cidence; that is, #A/rA = PB/rB. As an alternative, those circles of equal radius about

centers A and B may be mapped over into coincidence; that is, r A = r B. Note that the order-

ing of the circles in the transform space is inverse to the ordering of the sets of circles in

the original space, relative to the origin of the given space; this property is shown by the

directions of the arrows in Figure 1-3.

I
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V
V

V 2

V 3

POSITION SPACE

V --- POTENTIAL = _--
r

r = RADIUS SCALAR FROM

FORCE CENTER (A OR B)

_B > _A

(I.E., COINCIDENT CIRCLES REPRESENTING

SPHERICAL BODY SURFACES OF BODIES A AND B)

REQUIRED

TRANSFORM SPACE

Figure 1-3. Proposed Biharmonic Transformation
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The region of admissible trajectories in the original (i. e., position} space is the entire

volume outside the two attracting celestial bodies. The required transform space maps this

region within a bounded spherical volume about its origin; the spherical bound must repre-

sent the surfaces of the attracting bodies. This unique representation of two closed surfaces,

which are spheres of different radii, requires the unique (rather than arbitrary} selection of

magnification in the transformation. However, this element of the synthesis will be deferred

until later in the work task, since it can be easily determined after successful synthesis of

all preceding conditions.

Finally, it is noted that other transformations with potentially useful properties are not being

used in the initial synthesis. For example, the specific form (Reference 9).

W
-E: z

(1-24)

of the linear fractional transformation* provides the mapping shown in Figure 1-4. Note that

the point z1 maps over into the "points at infinity", whereas the point z 2 maps over into the

origin. As another closely related example, bipolar coordinates have proven useful in past

analyses of the celestial mechanics; for example, in approximating the "surfaces of zero

relative velocity" in the restricted three-body problem (Reference 10). The transformation

function for bipolar coordinates is

f

This transform maps the point z 2 into v = - oo, the point z I into v = + oo, and the x-coordinate

axis beyond the z2-z I strip (i. e., z < z 2 and z > Zl) into the v-coordinate axis. However,

these transforms do not meet the conditions a-c for the synthesis of the required transform

function.

*Also termed a bilinear, or a M_{bius transformation.
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Figure 1-4. A Linear Fractional Transformation
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SECTION 2

THE TWO INVARIANTS OF TWO-FIXED-CENTER ORBITS

Classical techniques of advanced dynamics have provided analytic solution to the two-fixed-

center problem, in terms of elliptic functions (i. e., by use of elliptic coordinates)

(References 1 to 3). However, this formof solution is not only quite complex, but is neither

tractable in application nor provides substantial insight into the more general (and realistic)

model of the restricted three-body problem.

The vector space theory for trajectories in the presence of one force center has shown that

a parametric form of trajectory solution is available not only in position vector space (i. e.,

by use of conic parameters), but also in velocity and acceleration vector spaces, as well

as all relevant state spaces (References 4 to 6). That is, the locus of the trajectory in

any two-dimensional state space can be specified in terms of parameters defined in the given

state space (e. g., conic parameters a, e, _, ¢_ in position vector space, velocity parameters

C, R, _, _; in velocity vector space, etc.). The basic objective of Phase IIA is to develop

the parametric form of two-fixed-center trajectory solution, comparable or analogous to

the parametric form of one-force-center trajectory solution; specifically, by use of velocity

parameters. A parametric form of trajectory solution must necessarily exist. It is specu-

lated that, when available, this form of solution will not only be more tractable to mission

application by machine computation or manual analysis, but will also be amenable to final

transformation to a state space and form of locus suitable for extension to the restricted

three-body problem.

Any given trajectory (as well as a given class of trajectories) is characterized by certain

invariant properties (Reference 7). In particular, a ballistic trajectory will be defined by

specific invariants and at least one time-dependent (or space-dependent) variable: cyclic

for periodic motion, noncyclic for aperiodic motion. The invariants of the two-fixed-center

problem, as obtained in classical theory, could be valuable in developing the equivalent

invariants required for the parametric form of trajectory solution.
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2.1 NATURE OF THE REQUIRED PARAMETRIC INVARIANTS

For the moment, let us consider the orbital trajectory in the presence of one force center.

At a given instant of time, the complete orbital state (and consequently the attendant tra-

jectory) is definable by, for example, the vector set (_, _). Each vector provides two

scalars, modulus and argument, so that the vector definition of trajectory at one instant of

time provides four variables. The equivalent parametric definition of trajectory must,

necessarily, require four parameters; for example, C, R, _, d. Note that three (C, R, _)

are invariants for a ballistic orbit with a simple spherical harmonic function of gravitational

potential field; the true anomaly _ is the cyclic variable.

Now let us consider the orbital trajectory in the presence of two fixed centers, as shown

schematically in Figure 2-1. At a given instant of time, the complete orbital state is de-

finable by the vector set ('_, V) referred to the barycenter of the system. That is, eight

terms define the motion:

a. Two scalars (modulus and argument} due to each vector-----4 variables and

b. The distance of each force center from the barycenter, the direction of the axis

of fixed centers, and the gravitational constant for each force center--_4 variables.

V

TRAJECTORY

V
MIDPOINT 2

FORCE _ BARY-_ FORCE
CENTER1 c c CENTER2

1 CENTE 2

e _ e

AXIS OF

FIXED CENTERS

Figure 2-1. Space Geometry of the Two-Fixed-Center Problem
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An alternative set of eight terms which do not refer to the barycenter directly can define

the motion:

a. Two scalars (modulus and argument) due to each vector--_ 4 variables,

b. The bipolar angles v 1, v 2 --_ 2 variables, and

c. The gravitational constant for each force center--_ 2 variables.

With a hypothetical valid decomposition of the total velocity vector V into two components
m

v 1, v 2 which, together with the given position vector __ (or r 1, r2), will define the complete

trajectory, the vector sets (r 1, Vl) and r 2, v2) due to each force center will provide

4 + 4 = 8 terms. In the proposed parametric form of solution, eight corresponding param-

eters will be required: four due to each force center, yielding a total of eight parameters,

e.g., (C1, R1, _1, _1 ) and (C 2, R 2, _2' _2 )" While C(), R(), _() are invariants, _1

and ¢_2 are time-dependent (or space-dependent) cyclic variables.

Although dl and d2 are cyclic variables, the orbital trajectory generated by use of the

parametric generating functions is not necessarily cyclic (i. e., not necessarily a periodic

orbit). A periodic orbit will be generated only if the period of the generating function due

to one force center is a multiple of the period of the generating function due to the other

force center. In other words, quoting Charlier (Reference 1): "The motion is periodic

in time as often as w21 and w22 (the biperiodic function) are commensurable with one

another. " For example, if the periods are identical, the simplest figure of periodic orbit

will be generated, i.e., a conic figure. In general, all other periodic orbits will be of

complex geometric figure, not simply described in analytic form by differential geometry.

The parametric invariants (C1, R 1, _1) and (C 2, R 2, qt2) are required for the parametric

form of solution. Moreover, the corresponding anomalies all' d2 at any given instant of time

must be identified by a valid governing algorithm to be determined. Both requirements

might be deduced from



I

a.

I
The algorithm or law for decomposition of the velocity vector V into the desired

Vl, v2, or I

b. A useful form of the invariants for the classical solution.

Since the algorithm for velocity vector decomposition is not yet available, the useful form

of the classical invariants would be desirable.

I

I
2.2 THE INVARIANT h'

The system energy per unit mass (h') is invariant, so that

In Cartesian coordinates (x, y),

I

I
(2-i)

I

I

in elliptic coordinates (_, ×),

I t

The invariant h' may be decomposed into any two scalars h 1, h 2 such that

h_= h, I _- hz'

(2-4)

(2-5)

(2-6)

I

!
I

I

I
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However, the required decomposition of the invariant h' for the parametric form of solution

is not arbitrary, but depends upon the algorithm of velocity vector decomposition. For

example, if the valid decomposition components of the velocity vector V were v1, v 2, then

_h'--(v, +_ )- Z + (2-7A)

or

_r__ra_ z 2 z
, r_

(2-7B)

Consequently,

so that

V_ r.I _

V.z. -
rz

(2-8)

or

(_"Z)-,, + .<.%. = - +- z - (2-9A)

(2-9B)

Now, for the purpose of demonstration of the decomposition, (or superposition) principle

to be sought, let us assume that the contribution (to the total angular momentum _ Vu) due

to each force center is a constant. Then

(2-10A)

or
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where

(2-14)

Note that the demonstrative assumption implies the hypothesis of a valid algorithm for the
u

decomposition of the total velocity vector (V) into the component vectors v 1, v 2 which are

each valid for one-force-center treatment, independent of one another. The subsequent

investigation for the parametric solution for the two-fixed-center problem requires the

determination of this required decomposition (or the superposition principle). The demon-

strative assumption is not itself considered valid, at this time.

2.3 THE INVARIANT 6

A second invariant 6 has been derived as a function of the concurrent angular momenta

relative to each force center (References 3* and 8). That is,

(2-15)

or

(2-16)

where

__--C,-_'_:_-_,

angular momentum per unit mass,
relative to force center 1

m

angular momentum per unit mass,
relative to force center 2.

(2-17)

(2-18)
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', U are not mutually exclusive; that is,Note that the variables L1 2

4: _ rI VI/2

_ _ r2 v2v

!

From a physical viewpoint of the dynamics, both variables (_1' _2) encompass a common

part of the total kinetic energy T.

The analytic equivalent of Equations 2-15 or 2-16, in terms of mutually exclusive (or com-

ponent} angular momenta due to each force center, is required in order to assist develop-

ment of the parametric formulation. That is, the invariant condition should be expressed

in terms of _1 v' L2 v such that

= (2-19)

"_lr = r'_ _.!,_. (2-20)

_'a = t-n VZ._ (2-21)

_"2r-- _ Vzr (2-22)

where

or

V = f(v 1, v2) (2-23)

q

V = f(Vlv, Vlr; v2v, V2r). (2-24)

The functional relation f is required for parametric representation of the two-fixed-center

trajectory. One approach to determination of this functional relation (or algorithm) is study

of the form of the two orbital invariants for particular solutions of known analytical form.

2-7



Note that "analytical form" may refer to the trajectory hodograph in velocity or acceleration

vector space, rather than the trajectory figure in position vector space.

The orbital invariants of the parametric solutions will be expressed as functions of 41 u'

_2u or _1 u' tlr' _2u' 2_2r rather than _ t_.
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SECTION 3

ELLIPTIC ORBITS

OF THE TWO-FIXED-CENTER PROBLEM

In the initial report (Section 1) which identified the problem genesis and major aspects of the

new analytic approach to ballistic trajectories of the two-fixed-center problem, three major

avenues of study effort were described. The preceding report (Section 2) discussed one

such study direction: the nature and properties of the invariants (often referred to as "integral

invariants"). Another study direction which holds great promise considers the detailed

vector space analysis of admissible orbits of simple geometric form- periodic or aperiodic.

This section presents the study results on such analysis of the class of elliptic orbits which

have been proven, in the classical literature (References 1 and 2), to be admissible geometric

figures of orbit in position vector space. Although such orbits are special cases, their

properties may provide some knowledge about the required general trajectory. In any case,

the properties of the general trajectory must necessarily define the properties of this special

trajectory as a subclass.

The elliptic orbit of the two-fixed-center problem is the simplest geometric figure of periodic

(or cyclic) occurrence. However, classical literature contains little information on its prop-

erties or its relation to other special orbits or the general class of ballistic trajectory. Con-

sequently, the research effort has required considerable time on exploratory analysis of such

trajectories, prior to the vector space analysis itself. Apparently, the new concepts of the

vector space theory are keystones to recognition of the trajectory characteristics which may be

subsequently useful.

3.1 THE ELLIPSE AS AN ADMISSIBLE TWO-FIXED-CENTER ORBIT

It is well-known that the ellipse is an admissible geometric figure of orbit in the presence of

one force center. * The properties of the ellipse (both as a geometric figure and as a

single-force-center orbit) are used here for this analytical study. Consequently, for orbits

about one force center, some of the definitive equations expressed in terms of the para-

meters of the ellipse are listed in Table 3-1. It is clearly advantageous to define the

coordinate origin as the force center, with the apsidal line of the orbit (or major axis of

* It is understood that the gravitational potential field of the attracting force center is a simple
spherical harmonic function.
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3-2

Table 3-1.

where

Definitive Equations of the Orbital Ellipse (One-Force-Center)

Y
V

UNFILLED MID-POINT
O 4.-

FOCUS

b

P

FORCE

£

FILLED

FOCUS

___" ¢, C_ "_ (3-I)

(3-2)

(3-4)

_/ =- _ (3-5)

/t = 9M (3-6)

C = qe, (3-8)
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the ellipse) as one coordinate axis. While Equations 3-1 through 3-5 are unique to the orbit

about one force center, Equations 3-7 and 3-8 are geometric equations for the ellipse as a

general conic.

It is easily shown by means of Bonnet's theorem (Reference 2) which is described in Subsection

3.6, that confocal ellipses (in which each force center is situated at a focus of the ellipse)

are admissible orbits. The definitive equations of the confocal ellipse as a two-fixed-center

orbit are listed in Table 3-2. In order to obtain the most tractable and compact forms of the

equations for general analysis, the coordinate origin is defined as the geometric center, or

the point (on the major axis of the ellipse) which is midway between the foci (i. e., the fixed

force centers)*. As shc_vn in the figure of Table 3-2, each of the two force centers (where,

in general, #1 _ P2 ) is located at opposing foci. Theoretically, both force centers could be

located at either one of the foci; the two-fixed-center problem would then have degenerated to

the one-force-center problem as covered by Table 3-1. In such a case, p = Pl + P2' r = rl= r 2,

/J =/j I =/J 2.

The angular momentum of the satellite in a two-fixed-center system is not simply described,

as for the one-force-center system. The total angular momentum is not the sum of the angular

momenta due to each force center alone, as for the scalars of energy E, potential V, and kinetic

energy T. In the one-force-center system, angular momentum referred to the force center as

the center of rotation is obviously conserved. Consequently, the analytic function, as pre-

sented in Equation 3-3, is simple. In the two-fixed-center system, the reference point is no

longer simply located; in essence, angular momentum in a bipolar system is complex in func-

tional form. This very point is the key obstacle to significant analytical advances in trajectory

problems for two or more force centers. As discussed in Section 2, the invariant 5 is pre-

sently defined in terms of concurrent angular momenta of the satellite, referred to each of

the two force centers alone. However, the physical significance and utility of these concurrent

momenta £ ' £ ' has not yet been determined.
1 ' 2

3.2 TRAJECTORY HODOGRAPHS IN VELOCITY AND ACCELERATION VECT(l_ SPACES

The trajectory "hodograph" (in position vector space) of the two-fixed-center orbit is an

I
t

ellipse. With the selected coordinate convention, the elliptic orbit in position vector

*However, the selection of the system barycenter as the coordinate origin might be advantageous

in some analytic treatments. The use of a focus as the coordinate origin may be employed in

specialized problem statements or for use of series approximation techniques in analysis.
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Table 3-2. Definitive Equations of the Orbital Ellipse (Two-Fixed-Center)

y

I
!

FORCE I

CENTER 1 __: _--
a L_ a w"

X

FORCE

CENTER 2

!
!
I
!
t
I

r, _-r_ = Zq

L

K- Ze,
'Z

(3-9)

(3-10)

I

!

E =El _- Ez =-£,_

(3-11)

(3-12)

(3-13)

I
I
t
I

T =" T I f T2. " "_ (V' 7"_ _2") (3-14) I
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space is defined by

7-

2.
2_ (3-16)

where

a = semi-major axis

b = semi-minor axis .

As noted in Table 3-1,

where

_ (3-17)
2.=__ _ -.--7. °

Knowing that this geometric figure is an admissible orbit, the velocity and acceleration hodo-

graphs must be developed so that subsequent study may reveal unique properties of the tra-

jectory in the given vector space, as well as the transformations between vector spaces. The

equations of the hodographs will be functions only of the parameters of the ellipse and satellite

position in orbit.

Analytic development of the definitive equations of the velocity and acceleration hodographs

as functions of the trajectory state in position vector space has been accomplished by means

of the following algorithm, or set of sequential operations:

STEP i: The derivative of the definitive equation in position vector space, with respect

to time, is developed so that an equation as a function of x, y; :_, 3} is obtained.

In general, this equation will not define velocity as a function of position ex-

plicitly.
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STEP 2: Consequently, the derivative of the final equation of STEP 1, with respect to

time, is developed so that an equation as a function of x, y; _, _ ; _" , y" is

obtained.

!
1

STEP 3:

where

It is known that

v - ._(/,.,,t_,,__x,j')

(3-18)

(3-19)

(3-20)

D
t
t
!
I

define valid relations between acceleration and position in separate, explicit

form. These relations are the identical equations of the acceleration hodograph.

Proceeding further to obtain the required velocity hodograph equations, the final

equation of STEP 2 is reduced to a function of x, y; £, _ by means of Equations

3-18 and 3-19.

STEP 4: With the given definitive equation in position vector space (i. e., Equation 3-16)

and the final equation of STEP 1, the final equation of STEP 3 is reduced to the

required equations of the velocity hodograph.

In accordance with the above logic, the hodograph equations are developed as follows:

IMPL 1: Differentiating Equation 3-16 with respect to time,

(3-21A)

or

(3-21B)
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!
IMPL 2: Differentiating Equation 3-21B with respect to time,

I
u

!

IMPL 3: Since

!

where

.L

I then IPz"= [('/'- _)_" "ll- _] _" '

I t

(3-22)

(3-23)

(3-24)

(3-25)

(3-26)

(3-27)
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Noting that

..2.. + .0 2- (3-28)

!

!
!

it is seen that Equations 3-26 and 3-27 are the acceleration hodograph equations. Now,

substituting Equations 3-26 and 3-27 into Equation 3-22 and rearranging,

IMPL 4: Rearranging Equations 3-16 and 3-21B to obtain

(3-30)

!

!

respectively, Equations 3-30 and 3-31 are inserted into Equation 3-29A to obtain

(3-31)

In similar fashion, we obtain

3-8

(3-32)
0

(3-33)

/



!

Noting that

(3-34A)

!

!

it is seen that Equations 3-32 and 3-33 are the velocity hodograph equations, which, upon

insertion into Equation 3-34A, provide

(3-34B)

I Note that the velocity hodograph Equations 3-32 and 3-33 are functions of x, in which

-a 4 x _ a (3-35)

is the region of solution. By means of Equation 3-30, the acceleration hodograph Equations

3-26 and 3-27 may be obtained in comparable form as

:

t
J (3-36)

!
!

(3-37)

I
I
i
I

Upon examination of Equations 3-32 and 3-33, it is seen that a more concise form of Equation

29A is possible, as follows:

V o (_t_)• _ (_)_
(3-29B)
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A few typical velocity hodographs and one acceleration hodograph were generated for demon-

stration and study of the hedograph characteristics. The hodographs of the following classes

of elliptic orbits are presented in Figures 3-1 through 3-5:

VELOCITY HODOGRAPHS

Pl

i constant a, variable e

= #2 i constant e, variable a
t constant c(=ae), variable a and e

(Figure 3-1)

(Figure 3--2)

( Figure 3-3)

Pl _ #2: constant a , variable e ( Figure 3-4)

ACC ELERATION HODOGRAPH

• (Figure 3-5)

!

I

!

!
I

!
Although these hodographs were generated by means of the explicit analytic equations for these

state space vectors, typical sections of the various runs were verified by means of the complete

dynamical equations of motion. Many observations may be made about the hodographs. As

shown in Figure 3-6, the position space intercepts of the ellipse with the x-axis (or major

axis) correspond with the velocity space intercepts of the velocity hodograph with the _-axis;

similarly, the y-axis intercepts of the ellipse correspond with the _-axis intercepts of the

velocity hodograph.

In all cases, orbital hodographs closer to the origin in velocity vector space represent orbits

in position vector space farther from the origin (and the force centers). That is, geometric

inversion occurs in the transformation from position to higher order vector spaces, just as in

one-force-center dynamics. Also, the orbital energy of those trajectory hodographs closer

to the velocity space origin is smaller.

Referring to the constant-energy class of orbital hodographs shown in Figure 3-1, it is seen

that all hodographs coincide at common intersections with the _¢-axis. The coincidence of the

hodograph intersections with the _-axis represents the constant-energy constraint for this

3-10



Figure 3-1.

Figure 3-2.

10

i

- I 5

Velocity Hodegraphs for Two-Fixed-Center Elliptic Orbit

(Constant Energy, #1 = #2 )

®

®

Velocity Hodograph for Two-Fixed-Center Elliptic Orbit

(Constant Eccentricity, #1 = _2 )
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Figure 3-3.

Figure 3-4.

D

Velocity Hodograph for Two-Fixed-Center Elliptic Orbit

(Constant Separation Distance, _1 = _2 )

Velocity Hodographs for Two-Fixed-Center Elliptic Orbit

(Constant Energy, _1 _ #2 )
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POSITION MAP OF

GIVEN ORBIT

1
X

A. IN POSITION VECTOR SPACE

4
X

CORRESPONDING

VE LOCITY HODOGRAPH

OF GIVEN ORBIT
3

Figure 3-6.

B. IN VELOCITY VECTOR SPACE

Correspondence of Vector Space Maps for Two-Fixed-Center Elliptic Orbits
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family of orbits. This functional relation is exactly the same as for the one-force-center

problem (Reference 3) as shown in Figure 3-7. Referring to the constant-energy hodographs

for u I # u 2 as shown in Figure 3-4, this geometric condition is seen valid for general cases,

even though the hodographs are no longer symmetrical about the _-axis.

The velocity hodographs for u I = u 2, shown in Figures 3-1 through 3-3, are symmetrical about

both the coordinate axes, whereas the velocity hodographs for _1 # u2' shown in Figure 3-4,

are symmetrical only abo-.t the F-axis. The F-axis is the velocity vector space counterpart of

the x-axis, which is the axis of the two fixed centers. That is, the transformation from posi-

tion to velocity vector space produces a phase advance of 7r/2, just as in the one-force-center

problem. To substantiate this deduction, the acceleration hodograph shown in Figure 3-5

produces a further phase advance of n/2; of course, graphical demonstration of this condition

(rather than a phase retardation or lag of _/2) would be provided by an acceleration hodograph

for _1 # tt2" However, analytical examination of Equations 3-36 and 3-37 for the acceleration

hodograph confirms this conclusion.
Y

, x

Figure 3-7.

COMMON POINT OF

INTERSEC TION WITH

-x-AXIS

Constant- Energy Family of One-Forc e-C enter Elliptic Orbits
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Concurrent study of Equation3-15 and the velocity hodographs (Figures 3-1 through 3-4) show

that a constant component of the velocity is always present, due to the term

U1 + U2 2(u 1 + u 2)
+

a P

with periodic variation with/21, Y2 which are of equal period. The first part of this constant

term (which could be shown by a circle about the origin in velocity vector space) represents

the energy invariant h (Reference 4). It is speculated that, upon comparable study of Equations

3-36 and 3-37 for the acceleration hodograph, a constant or invariant term of the total acceler-

ation scalar (i. e., of the geometric figure of the acceleration hodograph) may also be identified.

Since two invariants of the two-fixed-center trajectory exist, the other invariant must also be

definable in the velocity vector space. That is, the geometric figure of the velocity hodograph

must be a function of two invariants which are dimensionally@ velocities (e. g., ft/sec ). This
d

functional relation is identified ir_later section of this report.

3.3 HODOGRAPH SUPERPOSITION TECHNIQUE FOR GENERATING THE ELLIPTIC TWO-

FIXED-CENTER ORBIT

The development of the general parametric formulation of the two-fixed-center trajectory

solution requires the definition and use of the second invariant as discussed briefly above.

Although this analysis objective has not yet been attained, the utility of the consequent para-

metric formulation should be apparent with this special case of confocal elliptic orbits. For

example, the parametric formulation should enable generation of the trajectory hodograph

(and consequently its corresponding map in any other vector or state space} by means of the

hodographs due to each force center alone. That is, the hodographic solution for the one-

force-center problem will provide the two-fixed-center solution by an algorithm of hodographic

superposition. The existence of such a superposition principle is assured by the fact that the

required solution is a biharmonic function (Reference 1); every biharmonic function can be

expressed by two analytic functions of a complex variable {Reference 5). Although we do not

yet have the general parametric formulation, the well-defined knowledge of the special class
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I

I

I
I
I

of confocal ellipses must enable the analytic development of the special form of the super-

position principle for the elliptic orbit. Not only would the existence of the hodograph super-

position technique for this special class of orbit be essential in order for the general technique

to exist, but the unique properties of the algorithm must be embodied within the algorithm for

superposition generation of the general solution. That is, the algorithm of the special case

will provide essential clues about the general case.

I

!

According to Bonnet's Theorem, two conditional relations between the velocity vectors.

(Vl, v2, _) must be fulfilled at each and every point of the orbit:

a. The arguments or directions of all velocity vectors must be identical; that is,

l - °_

(3-38)

(3 -39)

! b. The magnitudes of the velocity vectors must be related by their squares, as the sum

of the composite vectors; that is,

(3-40)

I

I
I

I

Aside from the essential value in synthesizing the algorithm of the superposition technique for

the confocal elliptic orbit itself, these conditions are significant in two other respects. First,

these conditions are the direct result of superI)osition of the fields of force. Consequently, the

existence of the required superposition for this special class of orbit is obviously established.

Second, Equation 3-40 shows that the velocity vector decomposition suggested in Reference 4,

i.e., that

!

I
(3-41)

!

!
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cannot be valid* since it would require that

_fT. 7.. 7.= v, "I" vz -Zv, vz _a _: (3-42)

where a = direction angle between the vectors _1' _2" Obviously, Equation 3-42 can reduce

to Equation 3-40 only when a = n_r/2 (n = odd integer); but this reduction condition is impossible

by virtue of Equations 3-38 and 3-39.

The above noted conditions define the following superposition algorithm to generate the velocity

hodograph of the elliptic orbit, as shown schematically in Figure 3-8-"

a. Given an initial position of the spacecraft in the two-fixed- center system and the

definitive parameters of the confocal ellipse through that point in position vector

space, derive the hodograph parameters for each force center alone**.

b. The velocity hodographs due to each force center will then be defined in velocity vector

space (Figure 3-8.)

c. For any one value of the angle variable 1_1, the corresponding angle variable Y2 is

determined by the collinearity of Vl and V2 (Figure 3-8).

d. For any one value of the angle variable Yl, the magnitudes of 71 and V¢2 are determined

by the intersection of the line with each of the single-force-center hodographs.

e. The magnitude of the total velocity vector (i. e., the two-fixed-center orbit velocity)
is then

V = _Vl 2 + v22

I

I
I

I

I

I
I

I
I

I

I

I

I

I

I

*Note that this statement does not invalidate the hypothesis of mutually exclusive angular
momenta due to each force center.

**Naturally, the conic parameters of the confocal ellipse can also be directly derived, if desired.
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Figure 3-8. Algorithm Geometry for Superposition Technique of Generating Two-Fixed-Center

Elliptic Orbits

This superposition technique is valid for unequal as well as equal force centers (i. e., /zI _/z2).

Note that the angle variable v which refers the velocity vector V" to the y -axis maps over

into the angle (in position vector space) which refers the radial line between the position space

origin and the spacecraft point on the elliptic orbit, to the x-axis.

The interdependence of v I and v 2 occurs as the result of the bipolar nature of the problem.

However, it is noted that Lhese two angle variables are always related by a function of the

hodograph parameters (C 1, R1, C 2, R2), which are invariant. Consequently, the interdepen-

dence of the angle variables is a space-dependent, not a time-dependent, relation. This

functional property is essential for extension and development of the superposition principle.

3.4 THE INVARIANTS h_ 5 FOR THE ELLIPTIC ORBIT

The two invariants, h and 5, of the two-fixed-center problem have been briefly discussed in

Reference 4. It is extremely valuable to study these invariants for the elliptic orbit, since

superposition implies, necessarily, the separation of component terms of these two invariants,
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each component due to the individual force centers alone. That is, determination of h (hence E)

and 5 (hence £ ' )* for each of the two generating hodographs, due to the individual forcey

centers, will define the hodograph parameters C and R, since

J

(3-43)

(3-44)

The invariant h is directly defined by the total orbital energy E, as

h- Z_
' (3-45)

Consequently, the invariant h for the elliptic orbit has, in essence, been treated by the pre-

ceding work, since

E-E,+E 2
2.a •

That is, the orbital energy is decomposed into

E I
___{ (3-46)

E

or, for the invariant h,

h, = - _.,/_ (3-48)

h2." "- --/_"z./_ . (3-49)

*Note that, in accordance with the notation convention established in Reference 4, AYl', £Y2 '
define mutually exclusive angular momenta about each force center due to the component velocity

vectors Vl, _v2, whereas £1', £2' define the _n°n-exclusive angular momenta about each force
center, each due to the total velocity vector V;
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Actually, this decomposition for E or h is the immediate aspect of the energ_y conservation

principle. Upon comparison of Equations 3-46 and 3-47, it is seen that

__5
i , (3-50)

Similarly, the invariant 5 should decompose into the components 51 and 62 due to each force

center. First, the complete invariant 6 may be expressed in terms of the conic parameters

of the orbit. The general forms (Reference 4) of the invariant 6 are

, .L_. x-c.
_. r i /

(3-51)

or

(3-52)

where

-_' % C_,_)_= _ _, = angular momentum per unit mass,
'0 = rl I _ relative to force center 1 (3-53)

= = (_- -_7. =

Note that

angular momentum per unit mass,
relative to force center 2.

(3-54)

_].z = _._:_. __ _1 _. (3-55)
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As shown in Subsection 3.7, I

_'_/ _ z2 • _>

and |

or

E

I

I
Consequently, upon use of Equations 3-57 and 3-58 in Equation 3-52, the invariant 6 is I

J
expressed as

m e..z _ •

Now, let us decompose the invariant 5 into the components due to each force center. Upon

substituting Equation 3-40 into Equation 3-57,

Iji_; ' 7- _.

2._ Ze /--_
(3-61)

I
I

I

I
I
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I
I

Consequently, Equation 3-52 for the total invariant 5 can now be expressed as

where

%

2.

But, from Equation 3-130,

The energy equation

7_

2. Y',

provides

._L. = V_LI -- E._

F, /- m

so that, upon substituting Equation 3-67 into Equation 3-65,

7.

2_ e_ a

(3-62)

(3-63A)

(3-64A)

(3-65)

(3-66)

(3-67)

(3-68)
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Consequently, substituting Equation 3-68 into Equation 3-63A,

(3-63B)

\,

\

I

!
Then, by use of Equations 3-7 and 3-46, I

Similarly,

or

I 2.e.,

I

e.., e'a. (3-64B)
I

I

2._ (3-64C)

I

I
Upon comparison of Equations 3-63C and 3-64C, it is seen that I

(3-69)

Finally, the relation between the invariants 6, 61, 62 and the angular momenta £v' vl' _V2

must be established, in order that the hodograph parameters C and R be defined by means of

5( ) (Equations 3-43 and 3-44) . It is known (Reference 6) that
,7_

p - (3-70)
A

so that Eouation. 3-63C can be expressed in terms of £v1' rather than #1' by

3-24
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1

similarly,

2pe.

(3-64D)

Cons equently,

(3-71)

and

(3-72)

In summary, it has been found that the hodograph superposition for the two-fixed-center

elliptic orbit is due to the analytical decomposition of the basic invariants as follows:

E=E,-FE z

8 =&, + _z

The hodograph parameters (which are also invariants) can now be determined. Since

(3-50)

(3-69)

(3-72)

C,
(3-73)
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and

then

!

!
(3 -74) !

I

•."77 --

(3-75)

!

!

so that, upon substitution of Equation 3-75 into
!

(3-76) !

!
and subsequent reduction, we obtain I

Also, since I
"_ ZE! (3-78)

R_--C,,, =- _ |

and
I

I
I
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then

z C_
R, - , E, .._

7,._,.-c¢ E,. /,,,.
(3-80)

so that, upon substitution of Equation 3-77 into Equation 3-80 and subsequent reduction,

(3-8i)

The hodograph parameters (or invariants) are summarized as follows:

- (3-77)

(3-81)

It is clear that the ratio (_1 : #2 ) will determine the geometric constraints which the generating

hodographs due to each force center must fulfill, as discussed in the preceding section and

shown in Figure 3-8.

3.5 SUMMARY CONCLUSIONS

The equations of the velocity and acceleration hodographs for the confocal elliptic orbit of the

two-fixed-center problem have been developed. The functional dependence of the hodograph

geometry upon the various parameters of the elliptic orbit has been briefly explored by

mapping a few typical cases (Figures 3-1 through 3-5).

It has been shown that a superposition algorithm for generating the orbit in velocity vector space,

by means of the hodographs due to each force center alone, exists; also, this superposition

technique has been completely defined. Moreover, simple and basic relations between the

invariants - the classical "integral invariants" (h , 5), the hodograph parameters (C, R),

£', _'and the mutually exclusive angular momenta ( vl v2 ) - have been established. Obviously,
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the desired algorithm of superposition for generating any admissible orbit must encompass

or include this special algorithm as a subclass. Since the basic elements of the algorithm

are nonsimple due to the vector conditions expressed by Equations 3-38 to 3-40, the diffi-

culties of the analytical search become quite apparent. That is, the algorithm is fundamentally

nonlinear, so that many more candidate logical elements are available in development of the

general algorithm of superposition for all admissible orbits. However, all analytical proper-

lies are consistent with the dynamical and geometric principles which must be fulfilled, if a

general superposition principle does exist. Moreover, the laws of analytical decomposition

for the basic invariants, expressed by Equations 3-13, 3-50, 3-62, 3-69 and 3-72, provide

promising clues to further research development of the parametric form of the general

trajectory solution.

Further study of the properties of the velocity hodograph of the elliptic orbit is possible and

desirable. However, the equations and hodographs of the orbit in acceleration vector space

should first (or concurrently) be studied. Reference to Equations 3-18 and 3-19 indicates

that functional analysis in acceleration vector space may prove quite fruitful.

3.6 BONNET'S THEOREM

Bonnet's Theorem identified a particular class of trajectory occurring in the presence of a

force field due to more than one force center or source. The trajectory must fulfill specific

conditions of motion in the presence of each force center or source alone. The theorem may

be stated as follows (Reference 2):

"If a given orbit can be described in each of m given fields of force, taken

separately, the velocities at any point P of the orbit being vl, v_,..., v.

respectively, then the same orbit can be described in the find o4 force _vhich

is obtained by superpo_ing all these fields, the velocity at the point P being

(v12 + v22 +...+ vj2) I/2.''

In order to understand this theorem and its potential application, let us develop its logical

proof.
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Consider the typical physical problem shown in Figure 3-9. The particular trajectory path in

position vector space occurs in the presence of "k" bodies producing a composite field due

to "j" force centers, in which k > j. The intrinsic equations of the orbital path are, in general,

A_- V _V_s

v2
Ao= _

- tangential component of total acceleration

= principal normal component of total acceleration

(3-82)

(3-83)

where, at any given point on the trajectory, the instantaneous radius of curvature is defined

as 'p". Then

.__?"

(3 -84)

2

I
!

i 2
I I
I /

/

/ CENTER
/

_3 CURVATURE

ORBITAL PATH IN

POSITION VECTOR

SPACE

Figure 3-9. An Orbital Path Resulting from the Composite Field of Several Force Centers
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where

V

= normal component of the total apparent force vector, for the observed path

curvature p

!

= scalar of the velocity vector V (which is necessarily tangential to the

trajectory path}.

As stated in Bonnet's Theorem, it is known that this trajectory is identically realizable in

each of the "j" force fields, taken independently. Then the radius of curvature 'p" at any

one point on the trajectory must obviously be the same in each case, even though the sets of

vector scalars (F i, Vi) may differ from field to field. Consequently, it must be true that, at

any one point on the trajectory, the normal force components are

7.

t

1
Since field forces at a given point may be summed vectorially to define the total effective

(3-85)

force F active upon a test mass at the point,

,-?- _ (3-86)

Also, the trajectories in the presence of each of the force fields are known to be identical.

Then, must the trajectory in the presence of all such force fields be also the identical same

path? Let us prove that such is the case, by indirect or "reductio ad absurdum" proof.
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That is, assume that an additional instantaneous force l_ (directed along the normal to the

path} were required at a given point, in order that the particle would stay on the specified

trajectory. This additional normal force is defined as

B

- 2_ (3-87)

I
so that, now,

! (3-88)

Since all the normal force vectors (Fln, F2n,

then the scalar equation must be

..... , F. , R) have the same vector direction,
]n

I

I
FT_ -- F_ + F_ +

I so that, obtaining the force scalars from Equation 3-83,

I

I
I

But the total velocity scalar V is related to the total normal force vector FTn by Equation 3-84;

consequently,

I

I
r'nV i rq (y, _t. yz Jr" ' ' ' "*"Yj Jr- ]_ (3-91)

1



I

or

I

I

I

Now, the principle of energy conservation is valid in each of the force fields as well as in the

total (or composite) force field, in which the total energy consists of kinetic energy T and

potential energy V. Consequently,

=T + YEt i i

2. -- 11.._-

.-_T Jw,,Ej j vj
and

---m,
I

\

i

!

i

/

(3-93)

I

I

!

a

I

I

I

E : "T t"- V . (3-94)
I

I
Then, in accordance with the energy conservation principle, I

E = E + E2. + " " ' _t_ E j (3-95)

' I

and
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in accordance with the superposition principle for fields, so that

which means that

Upon comparing Equations 3-90 and 3-96, it is seen that

since, in general, p # 0 and the particle mass is finite. Consequently, Bonnet's theorem

must be true, as presented analytically by Equations 3-84, 3-85, and 3-98.

Note that, although the velocity vectors are collinear, the total velocity vector is not the

linear sum (as for vectorial addition), but is the square^oI the sums of the squares of the

vector scalars. This superposition principle for velocities (contrasted with the superposition

principle for fields, employed previously) is strikingly different from the conventional prin-

ciples which we find so powerful with other methods or theory.

3.7 REDUCTION OF THE MAJOR FUNCTIONAL TERMS OF THE INVARIANT 6 FOR

I

I

I

I

I

ELLIPTIC ORBITS

One general form of the invariant 6 is

(3-100)
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where

,_l = rlV.ul = Cx _-_-.,_ -_X-- angular momentum per unit mass, relative (3-101) I
to force center 1

I
_i = CX"¢')i - _ = angular momentum per unit mass, relative (3-102)

: r_'_l _" _ to force center 2 I

and all other terms are defined graphically in Figure 3-10. Note that

or

(3-104)

FORC E u_

CENTER 1

(_1)

LH 1

\
\

L. \

r2

T FORCE
_. c _ CENTER 2

(t_2 )

I

I

I

I

I

I

I

l

I
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Each of the two major terms on the left-hand side of Equation 3-100 will be reduced to

functions of the given constants (c, _1' _2 )' the conic parameters (p, e) of the elliptic figure

of orbit and the velocity scalars (v 1, v 2, V), where

_T z _ 7_ (3-105)

The velocity vectors _1' -v2' V are collinear, as shown in Figure 3-10.

! !

3.7.1 THE TERM (£1 _2/2e)

Referring to Figure 3-10, it is seen that

and

V_ V'2- = Sin _C
_/ _ z. (3-107)= _;n_ v, t" v_ .

Also,

,-(v,_.:__) = ,//_,F (3-108)

and

(3-109)
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so that

and

But

and

so that

and

3-36
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r'_.V_.

_.- _ = _-/z

(3-110)

(3-111)

(3-112)

(3-113)

(3-114)
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I.
Consequently, upon substitution of Equation 3-114 and 3-115 into Equation 3-106 and 3-107,

I we obtain

I _r -._. _f_lZ..L.- , 2"- _ (3-116)

* "_£ _/ 'J "vi" V"jV,-

I and

i r2"vz

I respectively, so that

I ._.'- _.v_- ;_-C v.

i Consequently, ------ V_.

I _:_ _,_ F_,_,_:I ___0_,
I Since _-_ _C L _IIVT.. J "

and

V2 =_z fT.

(3-121)

(3-I 22)

then

l"i !ri.

(3-123A)
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But

_o that

or

I

r I

I

2.

V,
2- _1_. (3-123B)

V2. ---

(3-125)

Substituting Equation 3-125 into Equation 3-120A,

2_ 2_

(3-120B)

3.7.2 THE TERM(_I cosYl-U2 cosY2)

For a conic orbit referred to one focus,

?
Lie. c_._#

(3-126)

so that

(3-1271
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Referring to the figure in Table 3-1, it is seen that

"_i : YI-- (_ I

I for the orbit referred to the focus at which force center 1 is located, so that

I

I

I
I

and consequently

I

I
I

I

I

By means of Equations 3-130 and 3-131, the required term is

"_ -"- r, rz .

But

VV_ r_ rrl 2_

I

I

so that

(3-128)

(3-129)

(3-130)

(3-131)

(3-132)

(3-133)

(3-134A)
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or

Equation 3-134A could also be obtained directly from Equation 3-15 in Table 3-1, by simple

rearrangement of the functional terms of the equation.
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SECTION 4

HYPERBOLIC ORBITS OF THE

TWO- FIXED-CENTER PROBLEM

(PERIODIC AND APERIODIC}

Vector space analysis of admissible orbits of the two-fixed-center problem is a new and

promising approach to development of the general parametric formulation of two-fixed-

center trajectory solutions (Reference 1). By means of Bonnet's Theorem, confocal conics

have been identified as admissible orbits; that is, confocal ellipses, and confocal hyperbolas

which must necessarily then be orthogonal to the ellipses. Initial study results on the con-

focal ellipse have been reported in Reference 2. Since the ellipse is a closed figure, the

confocal elliptic orbit must obviously be periodic (or cyclic}. However, the dynamics of

the hyperbolic orbits are quite different from the dynamics of the elliptic orbit for the two-

fixed-center problem, even though the geometric figures, as conic sections, are intimately

related.

In fact, the two-fixed-center hyperbolas do not meet all conditions of Bonnet's Theorem

for force centers of identical sense (i. e., solely attracting or solely repulsive}, although

Charlier (Reference 3} has positively identified two classes of hyperbolic motion, as follows:

"The planet moves along a hyperbola

either so that it departs to infinity

along the hyperbola. Then the focus

of this hyperbola lies in the larger

mass;

or so that it oscillates back and forth

pendulum-like along the hyperbola
around the x-axis. Then the focus of

this hyperbola lies in the smaller mass. "

That is, the admissible two-fixed-center orbits of hyperbolic figure in position vector space

may be aperiodic or periodic. In contrast, the admissible one-force-center orbits of hyper-

bolic figure are aperiodic only.
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Surprisingly, very scant information about the hyperbolic orbits is available, upon search

of the classical andcontemporary literature. Apparently, the detailed study of specific

classes of solution for the two-fixed-center problem hasbeen ignored, as an intermediate

means of study leading to more comprehensive and physically realistic problem models

such as the restricted-three-body problem. Although Charlier (Reference 3) has employed

an analytic criteria to classify the different regions and/or geometric shapesof such ad-

missible orbits, specific and detailed properties of these orbits in position vector space

(as well as other state spaces, obviously) were not analyzed or presented. This report

presents not only the results of vector spaceanalysis of the confocal hyperbolic orbits

(periodic and aperiodic), but also new, definitive data on the regions of occurrence admis-

sible to suchorbits.

4.1 THE HYPERBOLA AS AN ADMISSIBLE TWO-FIXED-CENTER ORBIT

It might be tacitly assumed that hyperbolic orbits for the two-fixed-center problem are

obviously admissible by virtue of Bonnet's Theorem (see Reference 2, Appendix A). Such

an assumption is made in Whittaker* (Reference 4) concerning "the problem of two centres

of attraction" in stating: "Now any ellipse or hyperbola with the two centres of force as

foci is a possible orbit when either centre of force acts alone, and therefore by Bonnet's

theorem it is a possible orbit when both centres of force are acting. " While the hyperbola

as a position state space locus meets the statements of geometric condition, the dynamical

conditions are not fulfilled. The theorem is stated as follows:

"If a given orbit can be described in each of m given fields of force, taken

separately, the velocities at any point P of the orbit being v 1, v 2 ........

vj respectively, then the same orbit can be described in the field of force
which is obtained by superposing all these fields, the velocity at the

point P being (v12 + v22 + • • • + vj2)l/2. ,,

*Contemporary and easily accessible references are employed wherever possible, even

though the original work has often preceded such publications. Original sources are

usually noted in such references.
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The theorem is invalid for hyperbolic motion in the field of two attracting centers, since

only the branch about the filled focus (of one force field alone} is physically realizable.

The other branch cannot "be described, " although that branch is identical with the realizable

orbit for the other force field alone. Moreover, the study results have conclusively shown

that Bonnet's Theorem is not applicable here, since the velocity relation

2 2 2 1/2
V=(v 1 + v 2 + "" + v ) (4-1)J

is not fulfilled.

Various techniques of analysis for two-fixed-center orbits in general have been devised.

All such known approaches synthesize the actual field due to the given force centers, by

an equivalent, composite field of other force centers and/or field laws which enable a

specialized mathematical reduction technique to be employed. As far as is known, this

study has employed a different approach. This approach is comprised of two logical

techniques carried out concurrently:

a.

Do

Development of the state space equations (which define the hodographs) from the

dynamical equations of motion;

Synthesis of a force center model (restricted to the given state space sites) which

fulfills the state space equations and hodographs in all respects.

This analytical approach has resulted in a remarkably compact and effective model which

has enabled extension of the superposition technique for elliptic orbits (Reference 2) without

ambiguity. Most striking of all, this superposition technique and the attendant decomposi-

tion of the two invariants are valid for all problem parameter variations, continuously and

without singularity. That is, the problem parameters Pl' P2' c (i. e., the separation distance

between centers 1 and 2) may be selected freely without change in the algorithm of the super-

position technique, or the equations of the invariant components.
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Since the properties of the hyperbola (both as a geometric figure anda single-force-center

orbit} are referred to in this analytical study, some of the definitive equations expressed

in terms of the parameters of the hyperbola are listed in Figure 4-1, for orbits about one

force center*. It is clearly advantageous(for the single-force-center orbit} to define the

coordinate origin as the force center, with the transverse axis of the hyperbola as one

coordinate axis. While Equations 4-2 through 4-6 are unique to the orbit about one force

center, Equations 4-8 and4-9 are geometric equationsfor the hyperbola as a general conic.

The basic geometry and terms of the orbital hyperbola for two force centers are presented

in Figure 4-2. In this case, it is quite convenient to define the coordinate origin as the

geometric center, or the point (on the transverse axis of the hyperbola} which is midway

betweenthe foci (i. e., the fixed force centers}. Aside from the analytic symmetry of the

equations, the consequenty-axis (which is then the conjugate axis of the hyperbola} is the

boundarybetweenthe regions of periodic and aperiodic orbits of hyperbolic figure for Pl _2'

as will be shown later.

4.2 EQUATIONS OF TRAJECTORY HODOGRAPHS II_ VELOCITY AND ACCELERATION

I

I
I
I
I

I
I

I
I

I
VECTOR SPACES

The trajectory "hodograph" (in position vector space} of the two-fixed-center orbit is a

hyperbola. Three classes of orbital motion along a hyperbolic path (or segment thereof}

are admissible (Reference 3):

ao

b.

c°

The satellite mass will proceed aperiodically to infinity and finite velocity, along

the hyperbolic branch about the focus in which the stronger force center is located;

The satellite mass will oscillate periodically in pendulum-like motion along a

finite segment of the hyperbolic branch about the focus in which the weaker force

center is located; or,

For equal force centers, the satellite mass will proceed to infinity and zero

velocity along either hyperbolic branch.

*It is understood that the gravitational potential field of the attracting force center is a

simple spherical harmonic function.
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I
Figure 4-2. The Orbital Hyperbola (Two-Fixed-Center} !

Class c is the bounding (or transition) case between the aperiodic and periodic motion of

classes a and b , respectively. With the selected coordinate convention, the hyperbo]ic
!

orbit in position vector space is defined by I
2 2

x__ - _y___ -- 1 (4-13) •
2 2 |

a b

where

a = semitransverse axis
I

b = semiconjugate axis. I
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As noted in Figure 4-1,

where

I
b_

! °

I

I

I

(4-14)

Knowing that this geometric figure is an admissible orbit, the velocity and acceleration

hodographs must be developed so that subsequent study may reveal unique properties of

the trajectory in the given vector space, as well as the transformations between vector

spaces. The equations of the hodographs will be functions only of the parameters of the

hyperbola and satellite position in orbit.

I

I

Analytic development of the definitive equations of the velocity and acceleration hodographs

as functions of the trajectory state in position vector space has been accomplished by means

of the following algorithm or set of sequential operations:

i
i

!

STEP 1:

STEP 2:

The derivative of the definitive equation in position vector space, with re-

spect to time, is developed so that an equation as a function of x, y; _, _ is

obtained. In general, this equation will not define velocity as a function of

position explicitly.

Consequently, the derivative of the final equation of Step 1, with respect to

time, is developed so that an equation as a function of x, y; h, _; _}, _} is
obtained.

I

I

I
I

STEP 3: It is known that

where

m c_x (4-15)

Ii

= _ _ bV (4-16)

I 4-7



define valid relations between acceleration and position in separate, explicit

form. These relations are the identical equations of the acceleration hodo-

graph. Proceeding further to obtain the required velocity hodograph equations,

the final equation of Step 2 is reduced to a function of x, y; :_, _ by means of

Equations 4-15 and 4-16.

STEP 4: With the given definitive equation in position vector space {i. e., Equation

4-13} and the final equation of Step 1, the final equation of Step 3 is reduced

to the required equations of the velocity hodograph.

This logical procedure has been described and implemented also in Reference 2.

In accordance with the above logic, the hodograph equations are developed as follows:

IMPL 1: Differentiating Equation 4-13 with respect to time,

×__._-_- _ (4-18A)

c_2" _z "" 0

or

IMPL 2: Differentiating Equation 4-18B with respect to time,

IMPL 3: Since

V, } (4-17B)

then

,. ,. ;]{ (4-2o}

4-8
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so that, according to Equations 4-15 and 4-16

Noting that

(4-21)

(4-22)

2. .,2.. ,.2.
(4-23)

it is seen that Equations 4-21 and 4-22 are the acceleration hodograph equations.

substituting Equations 4-21 and 4-22 into Equation 4-19 and rearranging,

NOW,

(4-24A)

But

(4-25)

(4-26)

4-9



so that

for x)ol> O_
o'S,
×

,,&,
¢1

_-_ _+_? q- (___)_

Iqt_, I'_-'--×)_ '

_or x {-_ < 0

J_ I_+_)3 + " I_-_

Upon comparison of Equations 4-27 and 4-28, it is seen that

where "sgn x" denotes the signum function; that is,

$3rl X=--l for K ( D

X

4-10

(4-24B)

(4-27)

(4-28)

(4-24C)
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Upon the use of Equation 4-13 and subsequent reduction of Equation 4-24C

×

IMPL 4: Rearrangement of Equation 4-13 provides

so that, upon substitution in Equation 4-18B,

2_ b_-

2. 2. _Z-

(4-24D)

(4-29)

(4-30)

Substitution of Equation 4-30 in Equation 4-24D with subsequent reduction, yields

•_ }_, _ _ X •

(4-31)

In similar fashion, we obtain

X • (4-32)

Since

,7.. .2-

_z-×_ +_ (4-33A)

it is seen that Equations 4-31 and 4-32 are the velocity hodograph equations, which, upon

insertion into Equation 4-33A provide

(4-33B)
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Note that Equations 4-31 through 4-33 are functions of x, which lie in two distinct regions

of solution defined by

and

x<O

that is, in the right half-plane and left half-plane respectively.

4-26, and 4-29, the acceleration hodograph Equations 4-21 and 4-22 may be obtained in

comparable form as

sgn x

By means of Equations 4-25,

can be reduced toThe potential energy V, expressed previously by Equation 4-20,

(4-34)

(4-35)

-(,_ - #'" ] _nV=-_ +_ - (,__.) (4-36)

Substituting Equations 4-33B and 4-36 into the basic energy relation

E=T+V (4-37)

the orbital energy is determined to be

(4-38)

4-12
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It is important to note that the total energy E is a constant independent of the coordinate

system (x, y); that is, sgn x is a notation convention used to identify that the total energy

of hyperbolic orbits about the larger or smaller force center is positive or negative

respectively.

4.3 REGIONS AND CLASSES OF HYPERBOLIC ORBITS

The results of the preceding section show that the orbits of confocal hyperbolas in the two-

fixed-center problem are defined discretely within two regions of solution: the right half-

plane (x > 0) and the left half-plane (x < 0). Also, the terms due to each force center (_1'

#2 } always appear as differences. Consequently, the orbital maps fall into three different

classes: _1 _P2 (periodic}, _1 _P2 (aperiodic}, Pl = _2" Study of Equation 4-38 shows

that, for _1 _ g2 (i. e., Pl < P2 or _1 > P2 }' the total energy E will be negative for orbits

about the smaller force center and positive for orbits about the larger force center, due

to the signum function (sgn x}. The total energy is zero for _1 = _2"

The total energy for hyperbolic orbits of the one-force-center problem (see Figure 4-1,

Equation 4-5} is always positive. Then the orbital mass will always escape from the system

(i. e., aperiodic departure to infinity} so that the kinetic energy never becomes zero. In

the one-force-center problem, the orbital energy is negative only for the periodic orbits of

elliptic (or circular} figure, whereas zero orbital energy defines the aperiodic orbit of the

parabola in which the kinetic energy of the orbital mass approaches zero as the mass de-

parts to infinity. If these characteristic relations between orbital energy and the orbital

figures for the one-force-center problem were assumed to be valid for the two-fixed-center

orbits, then the confocal hyperbolic orbits would be classified as follows:

a. aperiodic hyperbolas with positive kinetic energy at "infinity ',, for E > 0;

b. aperiodic hyperbolas with zero kinetic energy only at "infinity", for E = 0; and

c. periodic hyperbolic sections with zero kinetic energy at "turning points"located

in finite space, for E < 0.

4-13



Obviously, Classes b and c would then be uniquely different from the one-force-center

hyperbolas, with characteristic differences in their dynamics (e. g., "position, " velocity

and acceleration hodographs).

The three classes of hyperbolic orbit postulated above do, in fact, occur as described, as

revealed upon study of the hodographic equations. In the next section, some typical hodo-

graph solutions are presented, which demonstrate these properties. At this point, the

periodic hyperbolic orbit of Class c merits special study, particularly of the "turning

points" which define the endpoints of the hyperbolic section. That is, the velocity of the

orbital mass decreases to zero as it comes to momentary rest at a turning point, before

returning along its prior path with regained velocity. As a degenerate case, the turning

point may be a libration point, if the orbital mass is continually at rest at one such point,

without possible forces causing a displacement.

Since the velocity is zero at the turning points x t, Equation 4-33B provides the conditions*

that, when V2 = 0,

where e>l

Kb_c_ •

• Note that, if the original form of Equation 4-33B were employed,

With _ ]., xv_a 7

(o = ÷do+o 01

- _%/-_1/_2 must be negative in sign, with this convention. The convention forSO that

Equation 4-39 is for convenience only; the analytical results with the original form of

Equation 4-33B are identical.
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Consequently

(4-40A)

where

(4-41)

or

(4-40B)

where

(4-42)

Equations 4-40A or 4-40B express the relation between the x-coordinate of the turning

points, and the physical parameters /_1' /_2' c (which are given) and the trajectory param-

eters a or e (which are dependent upon the energy state or initial conditions). Upon re-

placement of the parameters a, b in the definitive equation of the hyperbola,
J

x2
"2

-_: = 1

by means of Equations 4-14 and 4-40B, the following relation between the x, y coordinates

of the turning points is obtained:

×_ _

Reduction of Equation 4-43 provides

"- _- • (4-43)

t _t = - -

2_

(4-44)
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which is recognizable as the equation of a circle with radius Po and circle center coordinates

(Xo' Yo = 0) where

P_
(4-45)

or

z+

(4-46)

_° ÷z _. £ (4-47)

This means that the locus of the turning points of periodic hyperbolic solutions for a given

set of physical parameters /_1' /_2' c must be a circle, as shown in Figure 4-3. All

periodic solutions about the smaller force center, possible for various values of a or e,

must lie within this bounding circle.

Y
HY PERBO LIC

SECTION

_-"'_ C _a e
t 2

x
0

TURNING POINT

LOCUS

xt I

X

Figure 4-3. Characteristics of the Turning Point Locus
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!
I
!
I
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I
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!
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Since f > 1 in all cases of periodic solution (i. e., Pl #p2 ), then

(4-48)

That is, the center of the circular locus of the turning points is displaced from the force

center along the x-coordinate axis in a direction away from the coordinate origin (see

Figure 4-3) by the distance

(4-49)

Also, since

then

(4-50)

that is, the locus of turning points is always located in the right (or left) half-plane for

Pl #P2' never crossing or intersecting the y-axis. For Pl = P2' the locus of turning points

becomes the y-axis identically.

The intersection points of the locus and the x-axis are determined by Equation 4-43 for

Yt = 0, thereby resulting in

so that

(4-52)

5

(4-53)
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Consequently, the two intersection points (Xtl, xt2)

and

Kt_" = -_-

are

(4-54)

(4-55)

Note that the turning point is itself a libration point; that is, the hyperbolic orbit con-
xt 2

taining the point xt2 is a degenerate case in which the turning point is the only admissible

point of that degenerate hyperbola. In this case, the force vectors due to the force centers

are exactly equal in magnitude, and opposite in direction.

Let us now survey the characteristic fields of conic orbit for the one-force-center and

two-force-center problems in position vector space. The elliptic orbit of the one-force-

center problem occurs regardless of which focus is "filled" by the force center. On the

other hand, the one-force-center hyperbolic orbit occurs only in that half-plane in which the

force center is located. An equivalent yet more significant interpretation, when comparing

the conic orbits for one- and two-force-center problems, is that one force center alone

(fixed in one focus) acts as an attractive center for hyperbolas in one half-plane as shown

in Figure 4-4A, and as a repulsive center for hyperbolas in the other half-plane as shown

in Figure 4-4B. Although a repulsive force center is not encountered in gravitational systems,

this viewpoint is useful for effective understanding of the two-fixed-center hyperbolic orbits.

The admissible conic figures of two-fixed-center orbit are confocal ellipses and hyperbolas.

As shown in Figure 4-5, the field of confocal hyperbolas is orthogonal to the field of con-

focal ellipses. This unique property enables the use of these fields as elliptic coordinates

(_, ×) for the general solution in the classical literature (Reference 4). The three classes

of two-fixed-center hyperbolic orbit occur as shown schematically in Figure 4-6. While

the aperiodic hyperbolas may occur for any values of Pl and P2' the periodic hyperbolic

section of orbit can occur only for #1 _ P2' about the smaller force center. The admissible

4-18
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region of periodic solution is a circle; the remaining region in that half-plane is an in-

admissible region for orbital solution of hyperbolic figure. For each circular region of

periodic solution, one libration point L( ) exists, located as shown in Figure 4-6A and 4-6C.

All periodic hyperbolic sections of orbit are unstable, whereas all the aperiodic hyperbolas

are stable orbits, as noted in Reference 3.

Consider the circular region of periodic solution. The weaker the smaller force center

(compared with the stronger force center), the smaller will be the radius of the circular

region. In the limit, if the smaller force becomes smaller until it is nonexistent, the

problem has degenerated to the one-force-center problem. On the other hand, if the weaker

force center increases until _1 = _2' then the circular region become s an entire half-plane

so that aperiodic hyperbolas may occur in either half-plane of position vector space.

4.4 HODOGRAPH MAPS IN VELOCITY AND ACCELERATION VECTOR SPACES

A few typical velocity hodogTaphs and one acceleration hodograph for aperiodic and periodic

hyperbolic orbits were generated for demonstration and study of the hodograph characteristics.

4.4.1 APERIODIC HYPERBOLIC ORBITS

The hodographs of the following families of aperiodic hyperbolic orbits are presented in

Figures 4-7 through 4-11:

#1 < P2

Pl < _2:

Pl < P2:

VE LOCITY HODOGRAPHS

t constant a, variable e

constant e, variable a

constant c (=ae), variable a and e

constant a and e, variable pl/p 2

ACCELERATION HODOGRAPH

a = 25, e = 0.50

(Figure 4- 7)

( Figure 4- 8)

( Figure 4-9)

(Figure 4-10)

(Figure 4-11).
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Figure 4-9. Velocity Hodographs of Two-Fixed-Center Hyperbolic

Orbits (Constant Separation, _1 > _)

Many observations may be made about the functional characteristics of the hodographs.

As shown in Figure 4-12, the position space intercept of the hyperbola with the x-axis (or

transverse axis) corresponds with the velocity space intercept of the velocity hodograph

with the j_-axis. Although it is not directly apparent, the transformation from position to

velocity vector space produces a phase advance of _/2, just as in the one-force-center

problem and for two-fixed-center elliptic orbits. However, referring to the acceleration

hodograph in Figure 4-11, it is apparent that further transformation from velocity to

acceleration vector space must then produce a further phase advance of 7r/2, since each

point of the acceleration hodograph is _r radians leading the corresponding point in position

vector space. Note that, just as in the vector space theory for one force center, the phase

in velocity vector space is not defined relative to the origin, but to the center of a generating

hodograph (Reference 5). (The generating hodographs of these hyperbolic orbits will be

discussed in the next section).
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In all cases, orbital hodographs closer to the origin in velocity vector space represent

orbits in position vector space farther from the origin (and the force centers). That is,

geometric inversion occurs in the transformation from position to higher order vector

spaces, just as in the one-force-center dynamics. Also, the orbital energy of those tra-

jectory hodographs closer to the velocity space origin is smaller.

Referring to the constant-energy family of orbital hodographs shown in Figure 4-7, it is

seen that all hodographs terminate on a circle of constant radius about the origin. The

hodographs approach the endpoints located on this circle, along a radius. This geometric

condition represents the constant-energy constraint which defines the given family of orbits.

This functional relation is exactly the same as for the one-force-center problem (Reference 6),

as shown in Figure 4-13.

Referring to the constant-eccentricity family of orbital hodographs shown in Figure 4-8,

it is seen that all hodographs terminate on two lines of constant slope (slope of one = +m,

slope of the other = -m) from the origin. The hodographs approach the endpoints located

on these lines, tangentially. This geometric condition represents the constant-eccentricity

constraint which defines the given family of orbits. This functional relation is exactly the

same as for the one-force-center problem (Reference 6), as shown in Figure 4-14.

Figure 4-10 presents the velocity hodographs for hyperbolic orbits with identical parameters,

but with different field strengths for the force center about which the aperiodic orbits occur.

That is, all such orbits are entirely coincident in position vector space, even though the

potential fields are different. Of course, the velocity hodographs terminate on lines of

constant slope from the origin just as in Figure 4-8, since the eccentricity is constant.

However, the endpoints occur at different radial distances from the origin even though the

parameter a is constant, because the energy (for the various orbits) is not the same (see

Equation 4-38). As the field strength of the proximate center increases, the velocity

hodograph expands; that is, the velocity scalar (point-for-point) is larger.
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Figure 4-11. Acceleration Hodograph for Two-Fixed-Center Hyperbolic Orbit

The velocity hodograph of a "transition" hyperbola (i. e., Pl = P2 ) has also been presented

in Figure 4-10, since it is the limiting hodograph of this family. This "transition" hodo-

graph originates and terminates at the origin. The hodograph of the corresponding hyperbola,

which lies in the half-plane of position space containing the other force center, will be a

mirror image (about the x-axis) of the "transition" hyperbola, as shown in the lower half-

plane.
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Figure 4-12. Correspondence of Vector Space Maps for Two-Fixed-Center

Hyperbolic Hyperbolas (Pl # P2 )

4.4.2 PERIODIC HYPERBOLIC ORBITS

The hodographs of the following families of periodic hyperbolic orbits are presented in

Figures 4-15 through 4-19:
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Figure 4-13. Velocity Hodographs for Constant Energy Family of
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I Figure 4-14. Velocity Hodographs for Constant Eccentricity Family of

One-Force-C enter Hyperbolas
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e=1.25

PERIODIC
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e= 1.25

Figure 4-15. Velocity Hodographs of Two-Fixed-Center Hyperbolas

(Constant Energy Curves)

VE LOCITY HODOGRAPHS

constant a, variable e

constant e, variable a

constant c (= ae), variable a and e

(Figure 4-15)

(Figure 4-16)

(Figure 4-17)

constant a and e, variable #1/# 2 (Figure 4-18)

ACCELERATION HODOGRAPH

a=20, e=0.50 (Figure 4-19)
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Figure 4-16. Velocity Hodographs of Two-Fixed-Center Hyperbolas

(Constant Eccentric Curves}
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I
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I

Useful observations about the functional characteristics of the families of hodographsfor

periodic hyperbolas are not as apparent or easily provided as for the previous classes

(i. e., ellipses and aperiodic hyperbolas). Of course, all velocity hodographs are periodic

figures shaped like the figure eight (8). As shown in Figure 4-20, the transformation

between vector spaces provides progressive phase advance of _/2 for each successive

higher-order vector space, just as for all previously explored classes of orbit. Moreover,

the origin of the velocity vector space maps over into the turning points in position vector

space, or into the corresponding endpoints of the acceleration hodograph.
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PERIODIC

HYPERBOLAS

ABOUT /J1

(_1 < _2 )

Y

m

1.0

A:

• B:

-.5

_-1.0

/a1=1 ; _2 = 2

c = ea = 20

x

.5

a = 15 ; e = 4/3

a = 10 ; e = 2

a = 4 ' e = 5

Figure 4-17. Velocity Hodographs of Two-Fixed-Center Hyperbolas

(Constant Separation Curves)

The sense of progression along the orbit in the various vector space is well-defined, as

shown. If one were to reflect the velocity hodograph upon the upper half-plane, about the

:_-axis, the ambiguity of sense would no longer be present. Then all vector space loci of the

orbit would have one sense only: counterclockwise.

Comparison of the corresponding hodographs for aperiodic, constant-energy hyperbolas

(Figure 4-7) and periodic, constant-energy hyperbolas (Figure 4-15) indicates that the

circle of constant radius (which represents "points at infinity" in position vector space)
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Figure 4-18. Velocity Hodographs of Two-Fixed-Center Periodic Hyperbolas

(For Various Source Strengths p2 )

vanishes to the origin, thereby constricting or "shrinking" the hodographs in both coordinates.

In fact, preliminary investigation indicates a direct constriction may occur, as a non-linear

function. If this were true, then any other hyperbolic orbit could be directly generated from

one given and defined hyperbolic orbit, periodic or aperiodic. However, further analytical

and/or computer study would be required before this hypothesis could be accepted conclusively.

Referring to the constant-eccentricity family of orbital hodographs shown in Figure 4-16,

it is seen that all hodographs terminate on constant-slope lines, just as for aperiodic orbits.

In this family, however, all orbital hodographs contact the constant slope lines tangentially

at one common point, the origin.

I

I

I
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Figure 4-19. Acceleration Hodograph for Two-Fixed-Center Periodic

Hyperbolic Orbit (u 1 < p2 }

Figure 4-18 presents the velocity hodographs for periodic hyperbolic orbits with identical

parameters, but with different field strengths for the force center most remote from the

periodic orbits. Consequently, all such orbits are entirely coincident in position vector

space. Moreover, all functional statements about the constant-eccentricity family shown

in Figure 4-14 apply here also. In contrast with the hodograph of the aperiodic hyperbola

occurring in the other half-plane (see Figure 4-10), the velocity hodograph of the periodic

orbit shrinks as the field strength (/_2) of the remote force center increases. Naturally,

all comments on the "transition" hyperbola are identical with those noted previously {see

Figure 4-10).
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Figure 4-20. Correspondence of Vector Space Maps for Two-Fixed-Center

Periodic Hyperbolas

An alternative function for the total velocity, other than Equation 4-33B, may be simply

obtained by means of the basic energy relation of Equation 4-37. The differences between

orbital energy and potential energy, by use of Equations 4-36 and 4-38 in Equation 4-37,

I provide

,
I

I

I

__ s]n x . (4-33c)

is

Equation 4-33C shows that a constant component of velocity I_1 always present, due to the

term

i

I 4-35



even thoughit is not directly apparent in Figures 4-15 to 4-17. This constant velocity

component,which could be shownby a circle about the origin in velocity vector space,

represents the energy invariant h (Reference 7).

Since two invariants of the two-fixed-center trajectory exist, the other invariant must also

be definable in the velocity vector space. That is, the geometric figure of the velocity hodo-

graph must be a function of two invariants which are dimensionally velocities (e. g., ft/sec. ).

This functional relation hasbeen identified in a later section of this report.

4.5 HODOGRAPH SUPERPOSITION TECHNIQUE FOR GENERATING THE HYPERBOLIC

TWO- FIXED-CENTER ORBIT

The development of the general parametric formulation of the two-fixed-center trajectory

solution requires the definition and use of the second invariant as discussed briefly above.

Although this analysis objective has not yet been attained, the utility of the consequent

parametric formulation should be apparent with this special case of confocal hyperbolic

orbits. For example, the parametric formulation should enable generation of the trajectory

hodograph (and consequently its corresponding map in any other vector or state space) by

means of the hodographs due to each force center alone. That is, the hodographic solution

for the one-force-center problem will provide the two-fixed-center solution by an algorithm

of hodographic superposition. The existence of such a superposition principle is assured

by the fact that the required solution is a biharmonic function (Reference 1); every biharmonic

function can be expressed by functions of a complex variable (Reference 8). Although we

do not yet have the general parametric formulation, the well-defined knowledge of the special

class of confocal hyperbolas must enable the analytic development of the special form of

the superposition principle for the hyperbolic orbits. Not only would the existence of the

hodograph superposition technique for this special class of orbit be essential in order that

the general technique exist, but the unique properties of the algorithm must be embodied

within the algorithm for superposition generation of the general solution. That is, the

algorithm of the special case will provide essential clues about the general case.
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As shown in Reference 2, superposition for the elliptic orbit of the two-fixed-center problem

is provided (in conformance with Bonnet's Theorem) by the following conditions for the

velocity vectors (V e, Vle, V2e):

a. The arguments or directions of all velocity vectors must be identical; that is,

(4-56)

b. The magnitudes of the velocity vectors must be related by the sum of their squares;
that is,

(4-57)

I

I

I
I

In accordance with the results presented in the preceding sections and Paragraph 4.8, it

has been determined that a comparable set of conditions between the velocity vectors (V,

v 1, v2) of the confocal hyperbolic orbits must also be fulfilled. These conditions are as

follows:

a. The magnitudes of the velocity vectors must be related by their squares, as the

difference between the composite vectors; that is,

(4-58)

I radians; that is,

I or ¢_r_ ? --ar_ V,

b. The arguments or directions of all velocity vectors are identical or opposed by

q_7 _-_v-_=o,_v_-'," I L< IvJ

(4-59)

The above noted conditions define the following superposition algorithm to generate the

velocity hodograph of the hyperbolic orbit, as shown schematically in Figures 4-21 and 4-22:
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Figure 4-21. Superposition Geometry for Generating Two- Fixed- C enter

Hyperbolic Orbits (gl " g2 )
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Figure 4-22. Superposition Geometry for Generating Two-Fixed-Center

Hyperbolic Orbits (t_ 1 > t_2)
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a.

b.

Co

do

e.

Given an initial position of the spacecraft in the two-fixed-center system and the

definitive parameters of the confocal hyperbola through that point in position

vector space, derive the hodograph parameters for each force center alone.

The velocity hodographs due to each force center will then be defined in velocity

vector space (see Figures 4-21 and 4-22).

For any one value of the angle variable Vl, the corresponding angle variable v 2

is determined by the collinearity of _1 and 9"2 (see Figures 4-21 and 4-22).

For any one value of the angle variable v 1, the magnitudes of v 1 and v 2 are de-

termined by the intersection of the line with each of the single-force-center

hodographs.

The magnitude of the total velocity vector (i. e., the two-fixed-center orbit

velocity) is then

v, - v, ) x

This superposition technique is valid for unequal as well as equal force centers (i. e.,

/_1 # is2)" However, the algorithm geometry is no longer as simple as the comparable

algorithm geometry for the elliptic orbit, as would be anticipated because the corresponding

equations of dynamic constraint are also more complex.

In order to understand and interpret the algorithm geometry more easily, let us consider

the simplest case: equal force centers. As shown in Figure 4-21, the velocity hodographs

due to each force center are equal in radius, and displaced from the state space origin

along the j-axis by equal and opposite center displacements. The limit points (PI' P2 )

and (1)3' P4 ) of the two sectors of each generating hodograph are defined by the two lines

which pass through the state space origin and, necessarily, are tangent to each hodograph,

as shown. The hodograph sectors P1 1)2' due to force center 2, and P3 1)4' due to force

center 1, generate the velocity hodograph for the hyperbolic orbit for center 2, whereas

sectors 1) 1) and _._4 generate the other orbit about center 1. As shown, the total-1,,_ 2

velocity vector V is directed along the larger vector (v 2 as shown), with magnitude

___v22 - Vl 2 At the corresponding sets of limit points, (1)1' 1)4) and (P2' P3 )' whichV

represent "points of infinity" in position space, v 1 = v 2 so that V = 0. The corresponding

position and velocity space loci are shown schematically in Figure 4-23, with the related

sense of progression for each orbit.

4-40

I

I

!
I
!

I
I

I
I

I
I

I
I
I
I

I
I

I
I



i

l,

I

I

i

I

I

I

I

I

i

I

I

I

i

i

I

I

I

3

2

1

4
6

Figure 4-23. Correspondence of Vector Space Maps for Two-Fixed-Center

Hyperbolas (_1 "_ _2 )

Let us now continue to the general case, for example, as shown in Figure 4-22 for #1 > #2"

Many characteristic properties of this superposition geometry may be observed. First,

the generating hodograph for the weaker force center (2) has smaller radius (C2) and j-axis

center displacement (R2) than for the stronger force center (1). 'Second, the aperiodic

hyperbolic orbit (which is proximate to center 1) is generated by the hodograph sectors ED
V

(due to force center 2) and IH (due to force center 1). Since, for each possible set of v 1,

v 2, it is apparent that Jv 11 > Iv21, the resulting aperiodic orbit hodograph lies necessarily

in the lower half-plane of velocity vector space, without approaching the space origin.

Third, the periodic hyperbolic orbit (which is proximate to center 2) is generated by the

hodograph sectors AB, due to force center 2, and FG, due to force center 1. At each set

of limit points (A, B) and (F, G), the corresponding velocity vectors Vl, v2 have equal mag-

nitudes (e. g., I V-lpI =l v2pl) so that the endpoints of the periodic orbit hodograph must

lie at the velocity space origin. Note that the directions of motion along the hodograph

4-41



segments AB and FG determine the symmetrical lobes (of the figure eight 8) for the periodic

orbit hodograph. As the two corresponding points representing the orbital mass proceed

counterclockwise (on each of the generating hodographs), the lobe of the periodic orbit

hodograph is generated in the upper half-plane. When these points then retrogress in clock-

wise motion after reaching limit points A, G, the other hodograph lobe is generated in the

lower half-plane by point symmetry [i. e., f (w') =-f (-w')where w'= k + i_J, as indicated

1

schematically in Figure 4-22. Fourth, the generating hodograph sectors EA, BD, IF and

GH represent inadmissible or inaccessible regions of generation.

_1 "_ _2 until/_1 = P2' the inadmissible sectors vanish (i. e., EA,

E = A, B - D, I = F and G - H for #1 =/_2" Then the geometry of Figure 4-22 would have

reduced to the geometry of Figure 4-21. Finally, the corresponding position and velocity

space loci for _1 _ _2 are shown schematically in Figure 4-24, with the related sense of

progression for each orbit.
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Figure 4-24. Correspondence of Vector Space Maps for Two-Fixed-Center

Hyperbolas (_1 _ _2 }
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4.6 INVARIANTS FOR THE HYPERBOLIC ORBITS

The two invariants, h and 6, of the two-fixed-center problem have been briefly discussed

in Reference 7. It is extremely valuable to study these invariants for the hyperbolic orbits,

since superposition implies, necessarily, the separation of component terms of these two

invariants, each component due to the individual force centers alone. That is, determination

of h (hence E) and 6 (hence _ ')* for each of the two generating hodographs, due to the
b'

individual force centers, will define the hodograph parameters C and R since

C-
_l (4-60)

/-- -_ -_ -_'v/ (4-61)

The invariant h is directly defined by the total orbital energy E, as

Consequently, the invariant h for the hyperbolic orbits has, in essence, been treated by

the preceding work, since**

E - E,-F E_. (4-63)

That is, the orbital energy is decomposed into

(4-64)

(4-65)

* Note that, in accordance with the notation convention established in Reference 7, _1',
&v2' define mutually-exclusive angular momenta about each force center due to the

component velocity vectors v1, v 2, whereas &l', _2' define the non-exclu__sive angular
momenta about each force center - each due to the total velocity vector V.

** In this section, the signum function (sgn x) will not be used, but is understood to govern

the selection of the hyperbolic branches, periodic or aperiodic. The analytical results

are completely valid for both cases. As presented in the following work, the

equations describe hyperbolic orbits proximate to force center 2.
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or, for the invariant h,

_)/ _ _ "_ (4-66)

_. -- -_ (4-67)

Actually, this decomposition for E or h is the immediate aspect of the energy conservation

principle. Upon comparison of Equations 4-64 and 4-65, it is seen that

E__ =__

E_

Similarly, the invariant 5 should decompose into the components 61

force center. First, the complete invariant 6 may be expressed in terms of the conic

parameters of the orbit. The general forms (Reference 7) of the invariant 6 are

(4-68)

and 52 due to each

(4-69)

or

whe re

I
= angular momentum per unit

mass, relative to force

center 1

(4-70)

(4-71)

= angular momentum per unit
mass relative to force

center 2.

(4-72)

I

I
I

I
I
I

I
I
I

I
I

I
I

I

As shown in Subsection 4.8,
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I

I " and

I

I

E Cp+24+2Y"

or

I /_,_'_,-_,°_'_"
I

I

I

2¢. d 2¢.

Consequently, upon use of Equations 4-73 and 4-74 in Equation 4-70, the invariant 6 is

expressed as

CI-rl 17"1 •

(4-74A)

(4-74B)

(4-75A :4-75B)

I

I
I

Now, let us decompose the invariant 6 into the components due to each force center. Upon

using Equation 4-58 with Equation 4-73,

_.j l _21 7.. 2._- Pv, _Z___
Ze., 2e., 2¢

Consequently, Equation 4-70 for the total invariant 6 can now be expressed as

(4-76)

I where

(4-77A)

(4-78A)

(4-79A)

I But, by means of Equation 4-133,

I
I

I

_r I C,
(4-80)
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I

The energy equation

provides

I

I

_--__L IZ m (4-82)

so that, upon substituting Equation 4-82 into Equation 4-80, I

Consequently,

2.

I

_u.:._t_tut.n__._u..t_o....-_...toE.:.t.o..4-_8A. I

Then, by use of Equation 4-8 and 4-64,

I

I

Similarly,

_,= -_ (1_+J)
2¢

(4-78C)
I

I

or

[,.+@] (4-79B)
I

I

(4-79C)
I

I

I
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i

Consequently, *

i

I
Upon comparison of Equations 4-78C and 4-79C, it is seen that

(4-77B)

i

I
i

I
I
I

I
I

(4-84)

2_ v 2_ '
Finally, the relation between the invariants 5, 61, 52 and the angular momenta v ' v 1 '

!

_2 must be established, in order that the hodograph parameters C and R be defined by

the terms 6( ) (see Equations 4-60 and 4-61).

It is known (Reference 9) that

!

so that Equation 4-78C can be expressed in terms of Lv rather than Pl' by

similarly,

7_

I
Consequently,

i

I

(4-85)

(4-78D)

(4-79D)

- (4-77C)

l * Again, attention is called to the footnote on page 4-43 re "sgn x" which has been omitted

here, for ease and clarityin reporting.

l

I
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and

In summary, it has been found that the hodograph superposition for the two-fixed-center

elliptic orbit is due to the analytical decomposition of the basic invariants (E, 5) as follows:

The hodograph parameters (which are also invariants) can now be determined.

and

then

so that, upon substitution of Equation 4-89 into

I

I

.__ _,ra,,_._o_o_ 0r I

__e°°__._,_'°°o_t_e_ ,o_- I

E-_,, E_ I

__,+_ I

___ ______ , I
E_ _, '_" _'_ I

;] _re also invariants) can I [ Since I

(4-87)

I

I

.o°__8_,_ I

,,,_/ _,.
I
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and subsequent reduction, we obtain

Also, since

(4-91)

7_ _. 2E
R, -C, =- m (4-92)

and

r_ (4-93)

then

7.- 2-

R,-c, K =
IR_-C_ F-z #_z (4-94)

so that, upon substitution of Equation 4-91 into Equation 4-94 and subsequent reduction,

The hodograph parameters (or invariants) are summarized as follows:

(4-95)

It is clear that the ratio (it1:#2) will determine the geometric constraints which the generating

hodographs due to each force center must fulfill, as discussed in the preceding section and

shown in Figures 4-21 and 4-22.
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4.7 SUMMARY CONC LUSIONS

The equations of the velocity and acceleration hodographs for the confocal hyperbolic orbits

of the two-fixed-center problem have been developed. The functional dependence of the hodo-

graph geometry upon the various parameters of the hyperbola has been briefly explored by

mapping a few typical cases (Figure 4-7 to 4-11, and 4-15 to 4-19). Aside from the new and

previously unexplored state space characteristics which have been revealed, the regions and

conditions of constraint upon two-fixed-center orbits of hyperbolic section have been defined

in detail. The regions and classes of hyperbolic orbits for _1 _#2 are summarized graphically in

Figure 4-25. All trajectories are hyperbolas aperiodic (or nonrecurring} about the larger

force center, or hyperbolic sections periodic about the smaller force centers. Note that

this means the half-plane in which the smaller force center is imbedded is a nonadmissible

region of solution, except for the circular region about the force center. As the field

strengths of the force centers approach equality, the circular region expands until it com-

pletely fills the half-plane for _1 = _2" Consequently, the orbits for _1 = _2 are hyperbolas

(aperiodic solutions only} mapped over the entire position vector space.

APERIODIC PERIODIC

IIX"PER BOLAS HYPERBOLAS

FORCE

CENTER 1

\

ENVELOPE OF ZERO

VE LOC ITY

Figure 4-25. Hyperbolic Orbits of the Two-Fixed-Center Problem
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It has been shown that a superposition algorithm for generating the orbit in velocity vector

space, by means of the hodographs due to each force center alone, exists; also, this super-

position technique has been completely defined. Consequently, two special classes of orbits,

elliptic and hyperbolic, have been shown to be determinate solely by the generating hodo-

graphs for each force center alone. Moreover, simple and basic relations between the in-

variants: the classical "integral invariants" (h, 6), the hodograph parameters (C, R) and

', & ' have been established.the mutually exclusive angular momenta (Ly 1 v2 )'

The study results have demonstrated that libration points, or zero velocity states, are not

singular points in state space analysis, but points of continuous variation (in the mathematical

sense) in velocity state space. Moreover, the hodograph parameters are always finite and

well-defined.

Further study of the velocity hodographs, acceleration hodographs and invariants (both

classical and hodographic) is strongly indicated as promising and desirable in achieving a

parametric representation for the general orbit of the two-fixed-center problem.

4.8 REDUCTION OF THE MAJOR FUNCTIONAL TERMS OF THE INVARIANT 5, FOR

HYPERBOLIC ORBITS

One general form of the invariant 6 is

where

Z.c

"_l = I,"'_, = _×'F'_)_ -_x = angular momentum per unit
mass, relative to force
center 1

= angular momentum per unit
mass, relative to force

center 2

(4-96)

(4-97)

(4-98)
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and all other terms are defined graphically in Figure 4-26. Note that
!

or

-2. 2.

v_ - v_ +%,
(4-99) !

!
7.

(4-100) !

Each of the two major terms on the left-hand side of Equation 4-96 will be reduced to

functions of the given constants (c, Pl' P2 )' the conic parameters (p, e) of the hyperbolic

figure of orbit and the velocity scalars (V, v 1, v2). According to Equation 4-33B in the

main body of the report,

Y
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Figure 4-26. Vector Geometry of the Two-Fixed-Center Problem



!
t • An alternative form is

which may be shown to be

= ¥2. -- _/,

for the hyperbolic branch proximate to force center 2. (See footnote on page 4-43}.

velocity vectors V, V 1, v 2 are collinear, as shown in Figure 4-26.

(4-101B)

(4-I02i

The

4.8.1 THE TERM (41'_2'/2c)

Referring to Figure 4-26, itis seen that

and

--2- 2.

Also,

and

so that

_',Vr

(4-103)

(4-104)

(4 -i05)

(4-i06)

(4-107)
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and

But

(4-108)

Oi -- _i = L (4-I09)

and

so that

Sin a:,=_3 {_,-- Vlv'r
(4-111)

and

rT.3z
(4-112)

Consequently, upon substitution of Equations 4-111 and 4-112 into Equations 4-103 and 4-104,

we obtain

and

V'V,

_Vz

(4-113)

(4-114)
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!

!

respectively, so that

Consequently,

Since

___/_ __,-4' --_,v_, v_-_,
V,

Ze.. 2c L v_v_.

T- E-V

(4-115)

(4-116)

(4-117A)

(4-118)

then Equations 4-17B, 4-38 and 4-102 lead to
"2.

-Z 2 - 2_ 2_ j ,]L r
(4-119)

! so that

Z 2_ r,

!
!

or

v, =-/_, -_-L z--_-
_ r"l

and

2.

2. Z_

(4-120)

(4-121)

(4-122)
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!
or I

Then

(4-123) I

But

V,
2.

v_ ;,_ -_-._ (4-124A)
|

I

r -r_ = 2q (4-125) I

so that !

or

y_. = _ (4-124B)
2..

° !
"/j V2. 1: _ (4-126)

Substituting Equation 4-126 into Equation 4-117A,

! /

2_ 2_

4.8.2 THE TERM(Pl cosy 1 - P2 cosu2)

Referring to Figure 4-2 of the main body of the report, let us consider the hyperbolic

branch proximate to force center 2, as shown. This hyperbolic branch referenced to

force center 1 is defined by

I

P

__- C_O_ (_j

(4-I17B)

(4-127)

!
t
!
i
I
t
i
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!
t , and

!
! referenced to force center 2. Then

It2. _-
P

! and

_q_, = _-

!
!

But

!
so that

!
I
I
!
I
l

and consequently

Also,

C..OS -D I '-- _S (_Z

:

!
!

(4-128)

(4-129)

(4-130)

(4-131)

(4-132)

(4-133)

(4-134)
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so that

_0S -02. --- C_ _Z (4-135)

!
i

. I ii

I

and consequently

By means of Equations 4-133 and 4-136, the required term is

But

so that

or

(4-136)

(4-137A)
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SECTION 5

CANDIDACY OF EQUIPOTENTIAL CONTOURS AS TWO- FIXED-CENTER OR BITS

The candidacy of isotachs (i. e., constant velocity orbits) as admissible orbits in a conser-

vative force field has been considered previously. Szebehely has discussed isotach orbits

and the relation of Hill (or zero-velocity) curves and orbits. A detailed analytical study of

this subject has been presented in References 1 and 2. Continuing these previous investiga-

tions, our present objective is to explore the complete class of isotach curves (zero and

non-zero velocity) in order to determine their admissibility as orbits, in particular, the

analysis of this section is restricted to the problem of two-fixed-centers of attraction.

5.1 EQUATIONS OF MOTION AND NECESSARY CONDITIONS

Let us consider a system of two attracting masses m 1 and m 2 of fixed location on the x-axis

of an inertial system of Cartesian coordinates, as shown in Figure 5-1. The coordinates

of these masses are ml(+C, 0); m2(-c, 0). We will consider the motion of a third body of

infinitesimal mass m which moves under the influence of the combined gravitational field

of m 1 and m 2. In particular, we want to determine whether m may move in the space

about m 1 and m 2 along an equipotential curve or space contour. Thus, our question simply

phrased is, "Are the equipotential curves orbits ?"

In the following discussion, the gravitational constants of the attracting bodies will be indi-

cated byp 1 = kml' and _2 = km2' where k is the universal gravitational constant. As known,

the equations of motion of m are

(5-1)

(5-2)

where U(x, y) and Q(x, y) are the potential function and the force function respectively, per

unit mass of the moving body. In our specific case, these functions are defined as

u :--¢z:- ¢=-- _
r-, r

(5-3)
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Figure 5-1. Geometry of the Orbital Path in the Two-Fixed Center Problem I

where ± I

_,-_c_-_÷_, _-E_,_'+i__. _-_, j
Thus, the equation of the equipotential curves may be expressed a I

where K is a positive constant (K > 0). I
Due to the fact that the Hamiltonian

(5-6)

!

!

5-2

I
I



is explicitly independent of the time, the variational equation

_H
at t (5-7)

leads to the integral of energy, H = constant. Consequently, along equipotential orbits, it

must be true that

(5-8)

!

I satisfy the second order, parabolic, partial differential equation

l

I

I

I

I

I

I

This implies that the equipotential orbits must be isotachs in order to be admissible.

Furthermore, as known, any admissible equipotential orbit in a conservative field must

(5-9)

where the constant k = 7 2(H - U). Equation 5-9 is a necessary and sufficient condition

for the existence of equipotential orbits. This property may be clearly demonstrated upon

solving Equation 5-9 by means of the method of characteristics. In such case, the charac-

teristic solution requires that

m/X

-zu,,% W

(5-10)

which, along an orbit x = x(t), y = y(t), leads directly to the well-known tangency condition

of the equipotential orbits; that is,

.,v(,,{)-_,,._. (5-11)
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Consequently, the characteristic solution of the partial differential equation (Equation 5-9)

is an equipotential orbit. This fact seems to be responsible for the difficulties encountered

in the determination and analysis of the properties of such curves. That is, the solution

of the partial differential equation (Equation 5-9) considered (as known from the available

theory) is not determined solely by knowledge of U and its first partial derivatives Ux and

Uy along the characteristics. In terms of our problem, this fact implies that knowledge of

the equations of the equipotential curves and the equations of motion (-U x = _, -Uy = "_)

is not sufficient to provide a solution satisfying the partial differential equation proposed,

and consequently, to define the desired orbits. Moreover, along the characteristics, the

second partial derivatives of U are indeterminate, as shown by the condition that the deter-

minant A must vanish.

In view of these preceding considerations, we have chosen to analyze the problem of the

existence of equipotential orbits by the use of a test of the necessary isotach condition which

such orbits must satisfy.

5.2 NECESSARY CONDITIONS ALONG ISOTACH ORBITS

From the tangency condition along equipotential (or isotach) orbits, it follows that

TT

_ _--_ (5-12)

T_ _ " (5-13)

Substituting Equations 5-12 and 5-13 in the integral of energy Equation 5-8, we obtain

,;<---+ kV_, kV_- , _1-?
(5-15)

Differentiating the left-hand member of Equation 5-5 and using the preceding expressions,

it can be shown that

-__xD_ _ _ _, = 0 , (_

5-4
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II

II

I
I
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I
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I
I
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I

I

I
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I
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I

I

I

I
I

I

which is the tangency condition for the curves defined by Equation 5-5, since /_Ux + U 2 _ 0°
Y

Consequently, upon comparing Equation 5-16 with the previous tangency condition (Equation

5-11), we obtain the following velocity components

_= +_ _-_- (5-17)

(5-18)

in which a is a constant of proportionality which, for the purpose of the following analysis,

may be set equal to a = 1. Consequently, Equations 5-4, 5-5, 5-17 and 5-18 lead to the

following expressions for the velocity components:

I

I
I

I

By use of these equations, we can now determine the coordinates and velocity at the points

of intersection of the equipotential curves with the coordinate axes. Consequently, after

simple reductions, we obtain

a. At intersection with the y-axis:

X---0

Irl = ?"2. "=

I
I ,-

I _=+- tC -_

I

(5-21)

(5-22)

(5-23)

(5-24)

(5-25)
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I

b.

I
As shown by Equation 5-24, the velocity vector will cross the y-axis normally -"

(i. e., be parallel to the x-axis) only if the gravitational constants, _1 and _2 ' m

are equal. |

At intersection with the x-axis: I
I

= 0 (5-26) I

r, x-c _ rz= x"l-c_ (5-27) ,,

J I

0 (2-29) I

Equation 5-29 indicates that the velocity vector crosses the x-axis normally in all cases.

The corresponding sign in Equations 5-21 to 5-30 is determined by the sense of rotation

with which the particle moves on its orbit. For the purpose of the present analysis, however,

the sense of rotation is not important, as will be seen in the following.

I

I

5.3 NONEXISTENCE OF EQUIPOTENTIAL ORBITS

The equations derived in Sections 5.1 and 5.2 may readily be used in a direct verification

of the isotach condition. Since, along a candidate equipotential orbit,

I

I
2.

then the magnitude of the velocity vector must be the same at any point of the equipotential

orbit. In particular, the following condition must be satisfied:

!
(5-31)I l,=o:i l .o , I
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I

!
Consequently, using the equations of the preceding section, it follows that

' L

(5-32)

I and

I
I

l

I

I
l

(5-33)

Therefore, upon equating Equations 5-32 and 5-33 in accordance with Equation 5-31, we

obtain a necessary condition for the existence of equipotential orbits, as follows:
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|

Without loss of generality, let us now assume that _1 - P2 > 0, since if an orbit exists • w

for Pl - P2 = kl > 0, then the reflected orbit exists for t_2 - t_1 = k 1 > 0. Consequently, I

if an orbit is admissible, it must be admissible for _1 - t_2 > 0.

However, upon rearranging Equation 5-34, we obtain I

I
Consequently, for Pl - P2 > 0, then it must be that K < 0, which is not admissible since

K > 0. This contradiction implies that no trajectory satisfies the isotach condition. That

is, no equipotential curve can be an orbit in the problem of two-fixed-centers.

I

I
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A.1

CHAPTER l'I, SECTION 1

"INTEGRATION OF THE HAMILTON-JACOBI DIFFERENTIAL

EQUATION THROUGH SEPARATION OF THE VARIABLES,
e!

THEOREM BY STACKEL. "
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IIf the time does not occur explicitly in the characteristic function H, then the Hamilton-

Jacobi partial differential equations read

according to formula (11), _ 9 in the first chapter. !

IHere, H is a function of second degree in the partial differential quotients of W 1.

One can now present the problem: When can this equation be integrated through separation

of the variables, i.e., when is it possible to integrate the Equation (1) in such a way that

one assumes the following form for W:

h

(2)

where each term of the right side, W (i) (qi)

variables -qi"

, is therefore dependent only on one of the

The solution of this problem in its general form appears to be combined with not insigni-

ficant difficulties, at least when it is a question of searching for the necessary as well as
YT

the sufficient conditions for solution. However, Mr. P. Stackel succeeded in solving the

problem in a fairly broad case.

This case is the one in which, in (1), besides the variables qi ..... qn' only the squares of

5W 5W
--,. -- occur. One can then find not only the relevant conditions for the solution, but
5q, ""' 5qn

also discuss the motion completely.

Accordingly, assume that (1) is of the following form:

n

(u = 0 (3)
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I

I,

I
I
I

I
I

I

l

l

I

I

l

l

I

l

I

I

I

where U denotes the force function, ot 1 a constant. The problem now is to investigate:

how must A 1 .... , An and U depend upon ql' .... qn' in order that complete solution of (3)

be of the form (2).

If one sets

then

7 (3*)

Now if W(q 1, ..., qn; c_1 ..... C_n) is the complete solution of this equation, then upon

substitution of this function in (3"*), this equation transforms into an identity, which then is

satisfied for arbitrary values of the integration constants c_1, ..., c_n.

ot1, •.., a n,

Consequently, one can differentiate this equation with respect to any one of these quantities

and one thereby gets the n equations

A,_ + A; _-_ +,, , -I-A,__WJ" - 5
(4)

o

Since, according to the assumption, the function W (ql ..... qn;al .... , an) is a complete

integral of (1), then according to _ 9 in the preceding chapter, the Hessian determinant of

W is different from zero. That is,

E

o I I

,) i J

_-W

k t l l I

Sz_V
n|

_0 (5)
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If one now considers the determinant

then one finds that

and since E does not vanish identically, then this must also be the case with A.

But if this is so, then one can solve (4) for the quantities A1,... A , and one then obtains,' n

according to I §1 (9),

Now, according to (3**),

Since, according to I _ 1 (2),

I

I

A-4

instead of (9).

then one can also write



I

I

I
I
I

I

I
I
I

I
I

I
I

I
I

I
I

I

I

The formulae (8) and (9*) are always valid. We have here made no other assumption about

the function W, than that it constitutes the complete integral of (1).

We now subject W to the condition that the variables in W are separable, so that W is then

of the form (2). We will furthermore see what results from the formulae (8) and (9*).

First, it follows from (3"), thatW K is a function of q K alone. Furthermore, since we have

found that A does not vanish identically, there are always values for the integration constants _1'

•.., _ for which A is different from zero. Let _1 ° on ' "" " ' _ be such a system of values.n

For these values of al' " " " ' an' the functions

transform into certain functions of q o
K

Then set

_W_._"
(<_v--£_Z,, ,_n)

so that

A-

For the considered values of e 1, ..., a n,

transform into certain functions of qK (

t L t

the expressions

l 1 L

( K"- l_ 2._ , ,,_ n)

=1,2 . .

#

• , n). If one then sets

If

then one is led to the theorem of Stackel:

(10)
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When the Hamilton-Jacobi differential equation
I

permits separation of the variables, then there is necessarily a system of n2 functions I

A-6

and a system of n functions

with the property, that the coefficients A1, _A2,...,A n can be described by the equations

and the force function U by the equation

Here, A is defined by (10).

I

I

L) = _ -_K _ _ o (Reference 1) (13) I

_'-J" I

(The factor 2 occurs in the expressions (8) for A K • These can obviously be omitted, where-

by one uses only the arbitrary functions _ K" suitable for transforming.}

I

I
These conditions are necessary. Whether the choiee ofthe functions _ and_ K eanbedone

arbitrarily, is hence not directly obvious. But this is, in fact, the case. In order to show

this, the most direct method would be evident-if one could show that the equation (11), where

the coefficients are given by (12) and (13), can always be solved through separation of the
TY

variables-which values give the functions _ and _. That is just what Stackel (cited

elsewhere) has shown.

I
I

I
I

1. P. St_lckel: On the Integration of the Hamilton-Jacobi Differential Equation by means

of Separation of the Variables. Inaugural Dissertation. Halle 1891.



I

I •

I

I

The solution of the equation in question is, in fact, the following:

Hence follows

(14)

I

I

I

I

I

(ow '_

But if one inserts the expressions (12) and (13) for A and U into (11), and considers the

relation
n

then this reads:

I _W
But this equation is satisfied by (15). That is, if one used this expression for _ q

one obtains

, .
I instead of (16).

I Now, according to I _ 1 (2),

I
so that the coefficients of _1 vanish identically.

I

(15)

I
Therefore, the partial differential equation (11) will be satisfied through (14).

equation contains the necessary number of constants _1 ..... _n

upon each other. In fact, it follows from (15), that

I

I

This

(16)

, then

and these are not dependent
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and consequently

(£_v =/.; 2.

Otherwise

- Z W,Wz ,,, W,,

- Z"W W W

Now, since it is assumed that I _5_ v I does not vanish identically, then this must also be the

case with I 32W I ' and the integration constants _1 " _ are then independent of

each other. _qK _av .... n

The partial differential equation

corresponds with the system of canonical differential equations

where now, if separation of the variables occurs,

-U

and A and U are given through the relations (12) and (13).
K-

solution of (17) reads as follows:

According to I _ 9 (12),

(18)

the

A-8
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I

I
I

I

I
I
I

I

I

I

I

I

I

I
I
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l,

i

I

II

I

I

I

II

I

I

_, :-_+_-7

6W

(19)

These equations (19) and (19") contain the complete solution of the canonical differential

equations (17) under the assumptions made here.

Therefore, if we compile the results, then they read as follows:

If n (n + 1) functions of every one of the variables

and

are given, with the condition that the determinant

A= I_1 (_,_- _,z,,,,_o_
does not vanish identically, but also are chosen arbitrarily; if furthermore we assume that

l

I
I

I

l
I

l
l

the n + 1 functions Al'_n" " " ' A and U are determined so that

M

_._ _, '
then the solution of the canonical differential equations

where _ - _-_ _ __ c_

is expressed by equations (19) and (19").
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Note: If one of the minor determinants 5 A is identically equal to zero, then the

corresponding coefficient A would disappear. But then it follows from the differential

equations, that the corresponding value for q,K is a constant, so that the order of the dif-

ferential equations can be reduced by one unit. I have assumed that this reduction of the

order will surely be accomplished so that none of the coefficients A K vanishes.

One can discuss the trajectory determined by equations (19) and (19") completely with the

help of these equations. But before I pass on to this discussion for an arbitrary number of

variables, I will look at the simplest example, namely, the case that only one single variable

q is present.

A-IO
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I
I

CHAPTER II, SECTION 2

A. 2 "TRAJECTORIES WHICH ARE DEFINED BY

ONE DEGREE OF FREEDOM. LIBRATION

AND LIMITATION. "
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Concerning a trajectory which is determined by the canonical differential equations

one says that this possesses n degrees of freedom.

then

I

I

_: _ I

_ _ I
f] If only one degree of freedom is present, I

where I

The corresponding Hamilton-Jacobi differential equation here reads simply I

and consequently I

Hence one obtains, furthermore, I

.±=r , _. (_) I
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I,

I

I

We now want to investigate the trajectory determined by this equation.

In order to shorten the form of the expression somewhat, I will introduce the designation

"mechanical quantity." By a mechanical quantity, I mean a variable which is real, con-

tinuous and finite for each finite value of time, in addition to its first differential quotient.

I
I

I

I
I
I

I
I

I

Of this kind are, for example, the right-angle coordinates in the three-body problem in the

case that a collision does not occur in finite time. One can also regard the osculating

elliptical elements of a planet, etc., as such mechanical quantities.

Instead of time, one can hereby introduce any other independent variable with the property

that it: (1) increases continuously with time, and (2) becomes infinite with time.

Now let a mechanical quantity q be defined by a differential equation of the form (3).

sets

then this equation reads

If one

(4)

Now it can be shown, that q can never exceed such a value q = a for which the function F(q)

I

I
I

I
I

I

disappear s.

Let F(a) = 0 and the degree of this root be equal to m where m denotes a whole, positive

number. One can then write

F(_)_=(IS-_3_ _ (_ (4*)

where d(a) is different from zero. We now assume that d(q) can be developed in a convergent

exponential series in the neighborhood of x = a, where therefore, according to the assumptions,

the constant term does not vanish. Then, from (4), we obtain
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+1

Upon integration, we must here differentiate betw cases, accor " g w ether m is i

an even or an odd number. I

For odd m, the integral of (5) reads I

%-o+' t '_-+ '+"-"'_ '+"_ I
and for even m I

+..+,-+.+ " }_-__-h-(.,+-+ +-,,,_- +¢+,'-+, ,+,, I
where% denotes an integration constant and is omitted inside the bracket of the term with the

coefficient C
m

--- 1
2

Now if, in this equation, we let q approach the value q = a, and indeed, so that the left sides

of (6) and (7} remain real, then the absolute value of the left sides and therefore also of t

increase simultaneously over all limits, whenever m > 2. Conversely, we can also assert

that, whenever m > 2, there is no finite value t' of t, for which q assumes the value a.

Furthermore, since q can only be transformed from real values greater than a over to real

values smaller than a - because q is real and continuous - through the presence of the value

q = a, then q never exceeds the root q = a, for m > 2.

I

I

I

I

Finally, if m = 1, then one has - according to (6) - the following relation between q and t in

the neighborhood of q = a:

2¢,ro>+ .. (s)

A-14
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I

I
I

I
I

I
I

I
I
I

Hence one now obtains

For t =- r follows q = a, which value one therefore reaches for a finite value of t. But the

point q = a can not be passed through. In fact, it follows from (8*), that q > a for A 1 positive

q < a always for A 1 nesative. In both cases, the point q = a can not be passed.

Consequently, we arrive at the following result:

If q is a mechanical quantity which is determined by the differential equation

then for no finite value of t can q pass through a point q = a, for which

(a)

If q = a is a simple root of (b), then this value is obtained for a finite value of t and the sign

of the differential quotient of q changes at q = a. If the order of the root is greater than one,

I
I

I

I

I
I

I

then the value q = a will be attained for no finite value of t.

Now let a and b (b > a) be two neighboring roots of (b) with the orders m and n, so that

where $ (q) vanishes for no value of q between a and b, including the boundaries.

(9)

If q lies between a and b at the beginning of the motion, then-according to the above theorem

- q must always lie between the limits a and b.
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In order to investigate the trajectory defined by (9), we introduce an auxiliary quantity w,

which is so defined, that

and then

: (10)

£
(11)

Since Equation (9) is to be replaced by two others, each with their special integration con-

stants, it is permitted to determine one of these constants with ease. We arrange that in (11)

the integration constants are defined so that w obtains the value zero whenever t itself is

equal to zero. Then it follows - from the same equation - that w must always have a real

since it isvalue. But we cannot specify only the value of w at the inception of motion, but,

only necessary that the equation

dw

occur between the squares of the differential quotients, then it is also permitted to give dt

an arbitrary sign at the inception of motion.

Then if we give dw the same sign as t at the inception of motion, then the signs of both these
dw

quantities will always coincide, since _ can never be zero (or infinite). Therefore, we

have - for all values of t -

where fl denotes a still undetermined positive constant.

I

I
I
I
I

I
I

I
I

I
I

I

From this equation between w and t, we can deduce an important property of w. That is, since

q in its variations is determined so that always b > q < a, and in accordance with the assumptions
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,I

I
I

made, $ (q} is continuous in this region and is never zero or infinite, then _ (q} must

necessarily have a finite upper bound and a positive lower bound different from zero, for the

1_'named q-value. Then this is also true for _ ¢ (q) so that it is always possible to find

two positive numbers L 1 and L 2 of the kind so that, for all q which are under consideration

here,

I _L,<_ <_L,
I and consequently it follows that

| L,t < _ < Lit . _12>

I

I
Since we have found two definite limits within which the value of w must be included, we can

pass on to the investigation of the equation (10), which contains the relation between q and w.

I

I

Here we notice, at once, the great advantage which the introduction of the auxiliary quantity

w provides us. In fact, the entire discussion of the motion now lies in the equation (10),

which can be treated by elementary methods. Assuming that the solution of this equation were

I
I

I
I

I
I

I

I

q = f(w) ,

then here we need only to permit w to pass through all values between -o_ and +_, in order

to describe the entire motion of q. And moreover, if we identify w with a constant times t,

we can obtain an approximate description of the motion. This is an approximation of the

same kind as that which one obtains in the general pendulum problem, if one substitutes the

sine amplitude occurring there for a general sine.

Let us first assume that

m =n=l,

which case was treated first by Weierstrass in an important paper (Monthly Report of the

Berlin Academy 1866).
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Now

I

The solution of this equation reads I

2_

Therefore, in this case, q is a periodic function of w with the period --7-. But it will be I
shown that q is then also periodic in t. Concerning the constant fl, we can, for example,

arrange it so that the duration of the period in reference to w coincides with the length of

period in t. I

Now, according to (11), I

fo" i=t .

qIf w increases by "-7, then remains unchanged. If we name the corresponding increase

int as 2T, then I

________ _:.__T___ .

2rr

But this expression is independent of w, since $ is periodic in w with the period -fl--; con- 1

sequently, 2T becomes a constant, and q is therefore periodic in t with the period

I
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I 0

ii

(16)

I

I

an equation which, according to (14), can also be written as follows:

(16.)

I

I

If the length of the period in u and in t should be the same, then one has

or

I
I

.a
I

I
I

I

I
I

If the roots a and b of the equation

F(q) = 0

are simple roots, then q becomes a periodic function of the time. This function is also a

direct function of t. The analytic description of this function can easily be found.

According to the theorem by Fourier, one has

where

0

_t

, , , (18)

(18")

I
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I
Hence one obtains - upon integration by parts -

where one has expressed t by means of q.
I

I
The computation of (18"*) occurs best, when one expresses t and q by means of the auxiliary

quantity w. I

According to (11) and (17) , one has

= /S_w

} (19)

I

I

and here

(19")

In particular,

/_T - n_-W c_w
_ "&--fTD_,,_ _-_)

D

_C o "=i . (19"*)

according to (16),

Through integration of (19), one now obtains

(20)
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l

I

I

I

I
I

!
!

I
I

I

I

I
I

I

I

By means of this equation, t is expressed by w, and the coefficients in this series can always

be calculated from (19"), for example, by means of the so-called mechanical quadrature.

On the other hand, according to (13) and (14),

(21)

If we now introduce the expression (20) and (21) into (18"*), then one obtains

T

or

(22)

where the expression (20) for t is now introduced.

The numerical computation of B according to this formula can be carried out in different
n

ways: by mechanical quadrature, through formulation with powers of C 1, C 2, ..... by means

of Bessel functions, etc.

If the order of the roots of the equation

F(q) = 0

are greater than one, then the discussion of the trajectory may be easily carried out with the

help of the equation
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First, let one of the orders, for example n, be 1, but the other - m - greater than one. Now

when dq is positive for t = 0, then q increases until the upper limit, q = b, is reached. Now

here, dq:dw changes sign, q begins to decrease and approaches the value q = a without limit,

with increasing w (therefore also t), without reaching it in finite time.

Second, if m as well as n is -> 2, then-during the motion - dq:dw never changes sign and q

gradually approaches one of the limits a or b (the latter limit if, for t = 0, dq:dw is positive,

the former if dq:dw is negative), without reaching it in finite time.

I have elsewhere (Reference 1) used the following notations in (_rder to characterize the

trajectories occurring upon solution of differential equation (4):

ae

b.

One says that a quantity possesses a libration motion if it oscillates periodically
back and forth between two fixed limits. These limits were named libration limits.

One says that a quantity possesses a limitation motion if it gradually approaches a

definite limit-value, without ever reaching it in finite time. The limit-value in

question was named limitation limit.

From the preceding analysis, it now results immediately, that the motion in the present case

can only be of both these kinds. And indeed libration occurs whenever the roots a and b are

both simple - otherwise only limitation.

The general analytical expression for q is given[(18) and (22*)] for the iibration case above

(mainly according to Weierstrass, cited previously). The corresponding expressions in the

limitation case are, as I know well, still not yet given.

l"On the Solution of Mechanics Problems Which Lead to Hyperelliptical Differential Equations,"

Bulletin of the Academy of St. Petersburg, 1888.
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The trajectories denoted here by "limitation" are of the same kind as the asymptotic tra-

jectories investigated by Poincar_. However, the analytical means of development of the

latter does not correspond with that considered here, which is valid for the limitation tra-

jectory, and I have therefore continued to use the name limitation motion.

The investigations on the equation

have received a unique treatment, in the history of mathematics. If we let F(q) denote a

polynomial in q of degree s, then it was proven in the beginning of the preceding century,

that, whenever s = 4, q is a so-called elliptic function of t, which has two periods, of which

at least one must be imaginary. But if s > 4, then q, regarded as a function of the complex

variable t, must have more than two periods. However, it was shown by Jacobi in a

celebrated treatise ("De Funetionibus duarum Variabilium, quadruplieiter periodicis,"

Part If)* that, when a function has 3 (or more) periods, either these periods can be composed

from two periods, or the function must be constituted so that it is invariant with an

infinitesimal increase of the argument. From this, Jaeobi deduced (as cited previously) the

conclusion that, whenever F(q) is of higher degree than 4, q cannot be considered an analytic

function of t.

The fallacy (which I am permitted to so call it) lies in that Jacobi has assumed in his argument,

that q is unconditionally variable in the entire imaginary plane. However, if one limits q to

only real values, as Weierstrass has done in his treatise cited above, then - as we have

already seen - q is considered as a well-defined function of the equally real variable t. One

can go even further in this way (Reference 2), when one separates out four - let them be a 1,

a 2, a 3, a 4 - instead of only two roots from the equation F(q) = 0 and introduce an auxiliary

quantity w defined by means of the following equation:

*Translator's footnote: "On Functions of two Variables, of quadratic periodicity."

2. See a paper by Dillner in the "Mem. de la Societe des Se. phys. et math. of Bordeaux."
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which can be of use when, in a mechanics problem, q can - under certain circumstances -

lie betweendifferent pairs of roots a. and a. at the inception of motion.
t ]

Example. The simple pendulum.

If the vertical coordinate of the pendulum, measured from the suspension point to the nadir,

is denoted by z, and the length of the pendulum by &, the acceleration of gravity by g, then

where z
O

denotes an integration constant.

d_

It now follows directly from the preceding arguments that when

(1)

(2)

(3)

-_ < z < &,libration occurs between the limits z and + _ ; when
O O

z < -L, libration occurs between the limits --5 and +&, that is, the pendulum

a_ways moves in the same direction, when

zo = -_, limitation occurs, and the pendulum approaches arbitrarily near to the
highest point with increasing time, without reaching it in finite time; when

= +L the pendulum remains stationary at the lowest point.(4) z ° ,

For the period of 2T, the motion in cases (1) and (2) yields - according to (16") - the values

2T =Z_

and _

_ 2_ +)+-..)

A-24

!
t

I
t
I

t
I

t

i

t
t
t

t
t
t

I
I
I
I



A.3

CHAPTER lI, SECTION 3

"CONCERNING THE DIFFERENTIAL EQUATIONS IN
MECHANICS. CONDITIONAL PERIODIC MOTIONS"
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Limited Periodic Motions

I now proceed to the general case, that the motion possesses n degrees of freedom.

sequently, let a canonical system of differential equations

Con-

c_t b_ '(i=l, 2, ..., n)

:_
(i)

be proposed, and we assume that the corresponding Hamilton-Jacobi partial differential equa-

tion can be integrated upon separation of the variables, so that ql ..... qn are given-accord-

ing to _ 1 (19) and (19") - by the following differential equations.

(p = 2, 3 ..... n)*.

The variations of ql .... ' qn should be investigated under the assumption that they describe

mechanical quantities, according to the definition given in the preceeding paragraph.

*Translator's note: "p" should apparently be "j"
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For n = 2, these equations were first investigated by Staude (Math. Annals 1887), who has

also introduced the remarkably productive concept "conditional periodic motions", about

which it is spoken below. For n > 2, Staude's investigations were conducted elsewhere further

by Stackel, who has also revealed an especially important property of these motions (Math.

Annals, Volume 54).

If one sets

(3*)

then the equations (2) and (2*) after their differentiation read:

0 = , , +

t ! # I j , e t i

W

+ ÷
1

(3)

0 0
At the beginning of the motion, ql .... ' qn may have the values ql ..... qn

consider the equations:

Let us now

0

Let a. and b. be two values of qi' for which (4) is fulfilled, and constituted so that a i < qi < b..1 1 1

These roots may be further constituted so that no other root of the equation ¢i = 0 lies between

them. Let the ordinal numbers of the roots be m. and n.. We now set
1 1
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m
m

(i--I Z

When we introduce the notations

and

(i = i, 2, . .

then we obtain the equations

j _ o * I J • • | t ¢ i I I t

According to } 1, we know that the determinant

., n)

/

(5)

(6)

(7)

(8)

is nonzero.

I |

Then it must be the same case for the determinant

A-28
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!
!

In fact, according to (7), the relation

exists between both these determinants.

If one differentiates this equation with respect to dij

constants, then one obtains

and thereby consider $1 .....

!

!
But now, according to (7),

Q
!
!

and consequently

In the special case of j = 1,!
i %F_ 1

(I0)

as

(11")

(11)
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In the first paragraph, however, we have proven that

and consequently the determinants

_E

cannot be identically equal to zero.

Let us assume that these determinants will be zero or infinite for no value of qi (i -- 1, 2 .... n)

between a. and b. {i = 1, 2, .... n).
1 1

After we have reviewed these observations about the determinant E and its minor determinant

of first order, now we have to analyze the system (8) with respect to dw I ...., dWn, which

can happen since at this point we know that the determinant E is other than zero.

According to I _1 (9),

E ____ _
_F,, c_F,,,

(12)

If we now properly select the values of the coefficients ill'" "" ' fin' then it follows that, since

t increases (through real values) from -oo to +_, then w 1, ..., Wn must always increase.

Hence it follows secondly now from (5), in accordance with the analyses in the preceding para-

graphs, that qi must always remain between the bounds a i and b..
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The functions

must always have an upper and a lower bound and then at last, it follows that w. must increase
1

with t beyond all bounds.

The motions defined by the equations (2) and (2*) are therefore analogous to the motions

investigated in the preceding paragraphs in so far as ql ..... qn must have either a libratory

or a bounded motion. Nothing prevents that some of the quantities qi have a bounded motion,

the rest a libratory motion.

If

L ' =" _- (i=l, 2, n),V_ --_ ...,

then libration by all variables occurs, and since this case is of special interest, we will

especially pursue it further.

Now the equation (5) reads

-- _ _AI_ (i=1, 2 ..... n), (13)

and yields

We insert this value of qi into (8). If we make use of the notation

(14)
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then we obtain the system

(15)

t k _, Q,I ,

I I I | * i L t _ L t _. t I I I

(16)

by integration of (8), where A 1 ...., An are the constants of integration. If we let w 1

by 2_r in this equation, then it follows-when we assume the simplest form with

inc rea se

(17)

that all together

I ! I S I L S. t t I ! L I I I I I I I I I

and here

Since ql

- : 5_I_,)_, .
I

is a periodic function of w 1, then wi j is consequently a constant, and we have
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I,

!
t

i
I
I
!

I

I

I

|

or

_ -- o,7(_,-o,xb;-9 _,(_,)
One obtains similar formulae, when w2, w 3 etc. are increased by 2n.

W
!

Consequently, we are lead to the result that, if w i (i -- 1, 2 ..... n) is increased by 2_, the

integration constants A 1, A 2 ..... An increase by constant quantities Wil, wi2, .. . , wi n. On

the other hand, we can assert that, if one regards Wl, w 2 .... w as functions of the inte-' n

gration constants A 1, A 2, .... , A , etc. These functions are of the character that, if A 1n

A 2, .... , A etc, are increased respectively by Wil' wi2' Win' Wl' w 2'n .... , .... , wi_ 1,

wi+ 1 , ...., Wn remain unchanged, whereas w.1 will increase by 2_r.

The quantities w 1, .... w are, in that case, clearly functions of the integration constantsn

A 1 .... , A . In order to show this, we differentiate the equations (16), since A 1, .. An '' n

will be treated as variables. If one considers (15), then one obtains

_1_,= F,,aw,t '" + F.__w.

| k _- L • _. L L L _- • L i

(18")

which equations yield

I * • L _I I • • I[ I 1 I I

when solved for dw 1 ..... dw o

n

i (18"*)
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Now since the functional determinant E vanishes for no value of qi which lies within the ad-

missible region for this quantity, then a unique, determinate system of values for the differ-

entials dw 1 ...., dWn belongs obviously to an arbitrary system of values dA 1, ... , dAn.

Therefore, if the integration constants A 1 ..... A n pass through an arbitrary continuous

series of finite values, then w I ..... Wn assume also a completely determinate continuous

series of values.

The quantities ql' .... qn are specific functions of w I ...., w n, therefore also of A 1, ... , An.

If we now let

_;,- ?,(_+A,_A_,,,,_ A.;
L L t _ _ I I _ #

(19")

then, according to the foregoing, the functions f have the following properties. This is,

l] 2"5 '"1 m

CL-:L_2._,.,_.'),

(19)

These functions are thus, according to a notation employed by Weierstrass, n-periodic func-

tions of the n variables t+A1. A2, '._.., An.
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!
I

I

The periods ¢oij are given by the following formula

In place of t+A 1, A 2, ... A , we introduce n new, definite (Reference 1) variables u 1,n • • • 9

u in the following manner.
n

_r(ti-K,') =c_,,u, ÷co._ z ÷ ,.. + co.__

t t , t t t L • • t t t [ ) L

(21)

where we assume that the determinant

(22)

is different from zero.

Now from the relations (21), it follows directly that, if u i (i = 1, 2 ..... n) is increased by 2_,

1. See Weierstrass:

variables."

_, t t ), t ( t ). ) a

"Some theorems relating to the theory of anal_ic functions of several
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On the other hand, we can state-since the relations (21) are linear and the determinant _ is

different from zero-that, since t+A 1, A 2, ..., An increase by 2wi 1, 2 wi 2, .... 2Win

respectively, at the same time u.1 will increase by 27r, while Ul, ..... ., Ui_l, ui+ 1, , Un

remain unchanged.

It now follows according to (19), that f. (i = 1, 2, .... n) periodic functions of u. (i = 1,
1 1

n) have period of 2v.

9...,

If we now denote those functions into which the f. transform, by gi' if the variable u I .... u1 ' n

are introduced instead of t+A 1, A 2, ..., An, then one has

I

|

I

!

,I

I
l

and in general

where m 1,
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l
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I
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I

!
,!

I

!

However, functions of this kind let themselves be expressed (Weierstrass in the place cited),

by means of a generalized Fourier series, with n variables:

('_, _v_. _, ,, _'o. :-_ _ , ,, _ +_')

where the coefficients are given by the formula

"UI_'0_._, ,, ?'0_

0 0

",_'_.,.)_ (24*)

The numerical values of this integral let themselves always be calculated, and in reference

hereon, the same comments which were made above in _ 2 for one variable, are valid m

mutatis mutandis.

The coordinates qi (i = 1, 2,..., n) are therefore, in this case, (m.1 = n.1 = 1) n-periodic

functions of the n variables u 1, u 2 ...., Un. It can also happen that they may be periodic

functions of time. But, in general, this is not so.

According to (21), u 1, u 2 ..... Un are linear functions of time. If one solves this equation,
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one obtains

I i i i i I i ! I l
I L s I l I I I I

Now if t is increased by 2T, then at the same time

(25)

u 1 is increased by

u 2 is increased by

u is increased by
n _.Z_T

When the motion is said to be periodic in time with period of 2T, then the preceding additions

must be whole multiples of 2_; consequently, the following relations
to u 1, u 2, • . • , un

must occur, in which m 1, m 2, .... mn denote whole numbers,

•J]- _,, T

& = W"

If these equations are now multiplied respectively by c011, w22 ..... Wn, and likewise by

w12, w22 ..... Wn 2, etc., and the equations (so obtained} added, then the following system

of equations results:
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1
I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

T -- ,_,_,, %_z_a +

_ _ I 1 l

,,, _I-m_ rj_I"

I I l i ! I

(26)

In order that the motion be periodic in t, the above relations must therefore exist between the

periods wi j. Then the period (in t) is given by means of the first of these formulae.

Because the coordinates qi can be periodic functions of t under certain circumstances, Staude

introduced the name conditional periodic motions, for these motions.

Since the determinant _ does not vanish, then according to (26), one unique system of values

for the quantities ml, m2,..., mn belongs to each value of 2T. If the quantities so deter-

mined are whole numbers, then the motion is periodic with period of 2T.

Yf

In reference to the conditional periodic motion, Stackel has proven an interesting and import-

ant theorem which I will now explain.

First of all, I note that an infinitely small variation of the numbers A 1 .... A corresponds,' n

according to (18"*) to an infinitely small variation of w I ..... w and therefore also to ann

infinitely small variation of ql ..... -qu--

We now have

and these functions are, according to (19), of the character that
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(27)

Now however, one can show (Reference 2) that one can always find infinitely many systems

of whole numbers m 1, ..., mn with the property that any one of the n-1 expressions

n

is smaller than any arbitrary quantity _, however small _ may be chosen.

Consequently, let the number m be chosen so that
0/

where [ Ej[ < c. Then one has, according to (27),

If one here set

t- t,- 7- z _._. - t,- 1_

2. See Jacobi elsewhere cited; Kronecker, Proceedings of the Berlin Academy, 1884.
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1

1

l

!

l

I

1
I

1

I

I

I

l

I

I

I

I

where t denotes an arbitrary value of time, then

Now however, I have really shown that, on account of the continuity of the functions f, they

undergo-upon an infinitely small variation of the integration constants A 1, A 2 ..... A -an

corresponding infinitely small variation. Therefore,

differs from f (to + A 1, A 2 ..... An) by an infinitely small amount, and therefore it follows

also- from the last equation- that the functions

and

differ from one another by arbitrarily small amounts.

Expressed in another way, this means that the coordinates ql' q2 ..... qn at time t 1 and at

time tl-P differ from one another by arbitrarily small amounts.

Therefore, if the coordinates at time t 1 have the values ql (1),..., qn (1), then there is always

another value for t - and even, because the numbers m can be chosen in infinitely many dif-
oz

ferent ways, infinitely many other values for t - for which the trajectory approaches arbitrar-

ily near to the point ql (1},..., qn (1)

IT

One can go further with Stackel and show that one always can find those values for the time,

for which the trajectory approaches arbitrarily near to some one point, which generally lies

within the admissible region for the coordinates ql ..... qn" This region B is determined,

according to the foregoing, so that
A-41
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Now if ql ' qq .... ' qn is any one point of the region B, then according to (16) a specific

system of values for t + A 1, A 2...., An belong to it - which values we wish to denote with

B1, B 2 .... , B .n

Now the function

does not necessarily determine one value of qf However, we want to show that one can

always find - in the expression for qi

I

I

I

I
I

I

l
one value for t, forwhich Qi (i = 1, 2 ..... n) differs from qi by an arbitrarily small amount. I
In that case, there is the relation (27). But now it follows, from the above noted theorem by

Jacobi and Kronecker, that-as long as the periods ¢0ij are independent of each other - one

can always determine the numbers m 1, m 2 ...., mn so that

n

i

I
I

differs from B i by arbitrarily small amounts. If we then set I

_ =B I - _ -- _ 2-_oC_ , then the theorem is verified.

_=_" I

This theorem expresses in qualitative theoretical terms, that the trajectory fills the entire

region B everywhere dense. I

The above explanations undergo only one exception then, whenever relations of the form (26)

exist between the periods wi j. Then the motion will be periodic, as has already been des-

cribed.

I

I
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The division between the periodic and nonperiodic paths is a question of the greotest signifi-

cance for these motions. The stability question is certainly intimately connected with the

nature of this division. In a following paragraph, I will have occasion to return to this question.

In the above discussion, it was assumed that the functions _. (qi) in formula (4) actually have1

two roots a. and b., between which the variable qi lies at inception of motion, and then must1 1

always remain. It can also occur, that this is not so, but that one or more of these functions

vanish for no real value of qi" The treatment of this case is, however, analogous to the pre-

ceding treatment. That is, it first follows that the corresponding q increases continuously

(or decreases continuously) with time. The variable q then has the same property as the

corresponding auxiliary quantity w previously. Of special interest is the case, that the co-

efficient of dq is periodic. That is, whenever the considered system of the following is

(28)

and the coefficients of-for example -dq I have the property of disappearing for no value of

ql or of being infinite and moreover are periodic with period of 2n, then it follows that, since

ql increases by 2v, A 1 ..... An will increase by constant quantities Wl 1 ..... Wln. The

quantity qi then has here the same property as w I in equation (16).

If

|l ,,
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is a constant, then theperiod is arbitrary.

It often occurs in mechanics, that the mutual position of the moving bodies remains invariant,

whenever one or more quantities qi (soealled angle magnitude) are increased by multiples of

2_. Then one introduces the auxiliary quantities

i

in place of these qi' and the discussion will then be completely analogous to the argument

given above.

Example. The conic pendulum.

If one takes the Z-axis as vertical, denotes-by e- the angle which the projection of the pendu-

lum on the XY-plane makes with a fixed line, the Z-coordinate by z, the length of the pendu-

lum by L, the acceleration of the gravity force by g, and finally two integration constants by

c and c', then the variations of z and e are given (see, for example, Despeyrous: Cours de

J

Mecamque, Chapter II, page 70) by the following formulae

(29)

and from this form of the differential equations, we can immediately conclude that we are

dealing with a conditional periodic motion.

For c = 0, one obtains the usual pendulum problem in the plane. If we exclude this case, then

one easily finds that the equation
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I
has three real roots, one root negative and numerically greater then 1, both the others

numerically smaller than 1.

I

!
Therefore, the coordinate z must always remain between both the latter two roots. Hence it

now follows that 62 z 2- can never be zero. The degree of the root is one, and we can directly

solve the formulae (13) and the following.

As often as z retains the same value and O increases simultaneously by a multiple of 2_, the

pendulum returns to the same position.

Therefore if we set

= ¢oa (3 , (30)

then the motion is periodic whenever y and z regain their original values. In these coordin-

ates, the differential equations after integration read

(31)

If we set

I
A-45



I

and denote both roots of h(z) = 0 by _ and fi (c_ > fl), which are numerically smaller than L,

and denote the third root by -Y, then one has to insert

I

I

I

I

!

I

into formula (6) and the following.
I

For the periods ¢oij,
one obtains the expression

I

uO,,= 0

and for the determinant _, one obtains the value

which consequently is different from zero.

The variables u 1 and u 2 and (21) are determined by the following formulae
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I

I
I
I

i

I

so that

The coordinates y and z can be described as biperiodic functions of both variables u I and u 2

with the help of equations (24) and (24*), and it is worth noting that these descriptions have

considerable m eri t over the conventional solution of this problem in application of elliptic

functions.

According to (26), the motion will be purely periodic whenever

and the period 2T is then

The complete theory of the spherical pendulum is contained in these formulae.
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I

I

B. 1 GENERAL CONSIDERATIONS

In the future I will confine myself to the case, that motion occurs in one plane. However, it

is worth noting that the general case - in three dimensions - can also be treated in completely

analogous fashion.

I If one makes use of the elliptical coordinates _ and # in I _7, then we obtain

I

I

I
I
I
I

I

- _[_ ),'_2T : (_-/t _-¢"

•If we want to write the differential equations in canonical form, then we can set

and then obtain, according to I _ 8

_.2"-/t2" _._,_T .. -

_T ?. 7. I

I so that

_ _, _ _:)

(z)

(2)

I

I
u _"-I: K+

The canonical differential equations now become
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_ I
(3)

_ op_ _ o_ I
where I

- T- U . ,_ I
The differential equations are obviously of the form that is necessary for the use of the

theorem of St_ckel. In fact, if one sets III _1 (10)} I

_), -¢. 3_ -C.

- _ K+'K I ,,, K-K _

_' (_,_-N_'_ _'-c_:-°')_' I
so that

then we obtain the above form. I

If we introduce the symbols k and _ (instead of ql

to II _ 1 (19) and (19") - the following equations:

and q2) again, then one obtains - according

I

I

I

I

t
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I,

I
I

I
I
I

I
I

I
I

I
I

I
I

I
I

I

I

(5)

corresponding with I _ 7 (43), and read the intermediate integrals:

i

The characteristic function H is independent of t and therefore here one has the integral

(5*)

H=h

or

E'-(x'-,_)_ k, __ +- =

1 K_ Ki)_] q-h
(6)

From these equations one finds that the quantities }, and p are-in general - biperiodic functions

of t + fll and f12" For the periods wij, one obtains - according to II §3 (20) - the following

values
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where

(s)

, !
and a2, b2 denote (respectively} the two roots of the equations R(X)=0 and

_(_):2/_ ¢_)[{__')__h__+_]

and al, b 1

s (_) =o. I
One finds that the determinants _ and _ in II t] 3 are different from zero, as often as not X = u,

in which case a conflict occurs.

If one introduces the auxiliary quantities u
1 and u 2 according to II §3 (21), then one has

I
I

I
I

or

/
and X and p now become biperiodic functions of u 1 and u 2

developed in Fourier series in multiples of u 1 and u 2.

(9)

with the period 2 _, which can be

The motion is periodic in the time, as often as w21 and w22 are commensurable with one

another, so that

I

I
I

I
I
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I

I
I

I

C) -- I¢_,L_.),I" "IL" _2 _ m.l. { (10)

where m I and m 2 denote whole numbers, and one obtains - for the period 2T - the value

2T ---Z_,oo,, -f- 2_._zl
(10")

If the roots of the equations R (_) = 0 and S _) = 0 are not simple roots, then bounded motions

occur.

I Aside from these cases, only two cases occur with different values of h and _, namely

I

I

I

I

1) that k or _ retains a constant value, or

2) that each motion is impossible.

In reference to the quantities 7, and _, I call attention to our definitions

I
Z_- = v""/"r

I

2_ = r- v"

I
from which it follows, that the following inequalities must always be fulfilled

• (11)

I
I

I

I call further attention to the fact that _ signifies the semimajor axis of an ellipse, whose

foci lie in the two fixed centres and which goes through the movable point. The quanitity

denotes the corresponding defining-values of a hyperbola. 2c is the distance between both

foci.

I

I

i

If X = c, then this means that the foci coincide with the end-points of the major axis of the

ellipse; that is, the ellipse is transformed into the straight line K'K for 7, = c. Consequently,

the movable point must always be found on the line K'K for X = c; I will name it simply the

planet.
B-5



If on the other hand tt = c, then the hyperbola consists of that part of the negative X-axis

which lies on the other side of the mass K'. For tt = -c one obtains the corresponding part

of the positive X-axis on the other side of the mass K. For _t= + c the planet is then found

on one of these parts of the X-axis.

If # = 0, then the hyperbola coincides with the Y-axis.

If the coordinates of the planet are X
O

according to (5*)

and tt ° at the inception of motion, then we must obtain-

M(_,) -(K-K')_, +h _: +< < 0
(12)

from which it follows that X and p must comply also with the inequalities (11). Further-
O O

more the relations (11) and (12) must be fulfilled not only with inception of the motion, but

always with all value-pairs generally compatible with the problem.

I proceed now to more detailed consideration of the different conditions of motion. It appears

to be appropriate to differentiate between the following cases:

1) h negative,

2) h positive,

3) h = 0,

4) bounded motion,

5) pure periodic motion.

In 1) and 2) I assume that the roots of the equations R (X) = 0 and S (X) = 0 are simple.

B. 2 THE CONSTANT h (OF THE KINETIC ENERGY) NEGATIVE. LIBRATION CASE

The equation R (X)= 0 always has both roots X =_+c. Since we want to assume here that the

constant h is negative, we set

h = -hl, (1)
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I,

I

I

I

l

I

I

I

I

I

I

I

l

I

I

I

I

I

where h denotes a positive value. If we now set
1

then we must always obtain - according to _ 1 (12) -

L (_.')_ 0 , (3)

If 4 could be increased beyond all limits, then L (4) would obviously become negative for

sufficiently large values of X, which is not permitted according to (3). Therefore, it follows

that - for negative h - the quantity 4 must always have a finite upper limit. Consequently, the

]planet cannot deviate arbitrarily far from K' and K.

We now call r
1 and r 2 the roots of the equation L (4) = 0 and therefore have

L(_._= h,(,-,-'_)()_-,.) , <_>
where it shall be assumed that

I_,> Irz (5)

for real values of r 1, r 2.

One can then recognize four cases:

r I and r 2 imaginary,

r 1 and r 2 real, but smaller than c,

r 1 real and greater than c,

r 1 and r 2 real and greater than c.

However, the first two of these cases give rise to similar states of motion and may therefore

be treated simultaneously. In both cases the sign of the same L (4) cannot change, because

no real root, which is greater than c, exists. In both cases - then - L (X) must necessarily

remain negative, because L (+ _) is negative.
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Consequently,we recognize the following three cases

(a) r I and r 2 either imaginary, or real and smaller than c,

(b) rl> c>r 2,

(c) r 1> r 2 > c.

If we make

M(/_)-(K-K'_/t-h,/__ Jr_ ,

and designate the roots of the equation

as Pl and P2' where Pl > P2 for real roots, then

M(/,)- h,(_,,-,,,.')(,,._#,.),
and one must always have

M(_)_ 0.

Here we have to investigate four cases:

(6)

(7)

(8)

a) Pl and P2 imaginary,

fl) Pl andP2 real and greater than c in absolute magnitude,

7) Pl > c>P2 >-c'

5) c> pl >p2 >-c.

In (7) is also included the case

as will be discussed shortly, below.

Since now each of the cases a), b) and c) will combine with the last four, one obtains here

12 different cases, which we will consider successively.
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I
I

I
I

I
i

I
I
I

I
I

I
I

I
I

I

I
I

Case Ia. The roots r i and r 2 either imaginary, or real and smaller than c.

According to § 1 (5*)

(1-_-fl-_ d). = _/"2i)_ .) L (I.)at

Since now - in the case - L (k) always remains negative and moreover _ cannot become

smaller than c, then one can satisfy this equation only if one sets

),_--_ .

Therefore, the planet must always remain on the line K'K.

Dependent upon the value of p, we obtain now:

(9)

(10)

The motion will be straight.

Case Iaa. Pl andP2 imaginary.

The function M (g) does not vary in sign for real values of _ and is then negative, because

it will be negative for sufficiently large values of p.

We have

C__a_= 12(___MI_ , ,ii,
and since M (_) is now negative, then p would oscillate periodically between +c and -c.

However, since the planet coincides with one of the masses K or K' for _ = +c and _ = c,

then the validity of the differential equations ceases.

The case Ia(_ is therefore characterized by the fact, that the planet is located on the line K'K

with the inception of the motion and its initial velocity lies along the X-axis. The planet moves

in this direction until coincidence with K' or K occurs.

Case Iafi. Pl and P2 real and greater than c in absolute magnitude.

The function M 0_) does not change in sign during the motion.

IF M (p) is negative, then one has the same motion as in Iaa. If - on the other hand - M 0_)

is positive, then it follows from (11), that _ must necessarily be constant +c or -c.
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Consequently, the planet has now the same coordinates as one of the masses and motion is

not possible.

I

I
CaseIa_. Pl>C>P2>-c.

We have

_-¢')M _ _-_)h, (_,-_(z-p,)
In order that this expression remains positive, it is obvious that

-c _/. _ p_. •

-_is positive at the inception of motion, then g increases until the value _ = p2, thenIf

reverses and coincides at last with the mass K.

Case Ia 6. c>p > p2 >-c.1

It follows from (12), that one has either

or

-c <-/t -<p_ ,

pj <-/t <_ C .

The planet coincides with K or K'.

As a fifth possibility, one can properly consider the case, that

I

(12) I

I

I

I

I

I

I

!

which is obviously similar to Ia y, only here the planet must coincide with the mass K'. I

We now turn our attention to

>eCase Ib. r 1 > r 2.

From

I
I

I
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I
I

I
I

I
I
I

I
i

I

I
I

I

I

it follows that

r,>.),>_c .

If dX is positive at the start of the motion, then X increases until the value )_ = r is obtained.
1

then begins to decrease, and decreases continually until X = c, in order then to increase again.

Therefore, libration in X occurs. Geometrically speaking, the planet must always be found

inside that ellipse which has its foci in K' and K, and whose semi-major axis is constant r 1.

The complete description of the motion depends upon the values of the roots Pl and P2"

Case Iba. Pl and P2 imaginary.

The function M (_) does not vary in sign and remains negative. It now follows from (11),

that ]_ swings between the limits +c and -c. Therefore, libration occurs in _' as well as in

_, and we can here apply the results of limited periodic motion. Therefore, the trajectory

curve consists either of a continuous line - nearly in the form of a lemniscate - or it

fills the entire interior space of the ellipse r 1 with uniform density.

For the fundamental periods w.., one has here the values
1)

r'f

=_ d),
('JUI Z

e.. -e.,

The quantities )_ and g can be described as Fourier series constantly converging to the

multiples of both arguments u I and u2, determined by means of _ 1 (9).

Case Ibm. Pl and P2 real and greater than c in absolute magnitude.

The function M (p) does not vary in sign during the motion. If M (_) is negative, then we

revert to Ibm. On the other hand, if M (#) is positive, then it follows - according to (11) - that

A = t_ _r -e..
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The motion occurs on that part of the X-axis which, computedfrom the coordinate origin,

lies on the other side of the masses K' and K. The planet coincides at last with one of the

masses.

>c >
Case Ibm. p I p2- -c.

As in the case Ia7, one now finds that

Then libration occurs in g, as well as in _. The path lies inside the space situated around

K, which is bounded by the ellipse X = r I and the hyperbola g = P2" The motion is then

conditionally periodic. For the fundamental periods Wll and u)12 one obtains the same

expressions as in Ibm; the values of the rest are

Then the body changes to a satellite of mass K. Here it is of the greatest interest to note,

that the trajectory curve of the satellite fills the admissible region with uniform density,

and that there is - according to that - no lower limit for the distance of the satellite from the

mass K. However, an upper limit is present.

To this case also belongs the one that

c >_, >-c >c a •

Then the body moves as a satellite around the mass K'.

> P >-C.Case Ib6. c>P 1 2

The body changes to a satellitewhich moves either about K' or about K.

the same as in the preceding case.

The treatment is

Case Ic. r I as well as r 2 greater than c.

According to (13) it now follows, that either k =--c, which case we can pass over, or

B-12
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I
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I
I

I
I

l

I
I

I

I

The motion occurs inside two ellipses, whose semi-major axes are constant r 2 and r 1.

The magnitude X possesses a libratory motion between the limits r 1 and r2o More detailed

determination of the motion depends upon the values of the roots Pl and P2"

Case Ic_. Pl and P2 imaginary.

As in Case Ibc_, so it follows here, that # oscillates between the limits +c and -c. The

planet moves in a path which encloses both masses K' and K, and which is either continuous,

or fills the space enclosed between both ellipses r 1 and r 2 with uniform density.

Case Ic _. Pl and P2 real and greater than c in absolute magnitude.

According to the presupposition, r I > r 2 > c and

L(r,_ = L(r z) --- (_ •

Further since L {+_) is negative, then

-h,c + < < 0

which means

However, there now is

_(o)- (K-K')_-H,
Then M (c) must also be negative. But according to the presupposition, the roots of the

equation M (p) = 0 are both real and numerically greater than c. Then M (p) must be negative

during the motion - for which the condition I# I < c always occurs - and one finds accordingly,

that we will be led back to the Case Ic_.

CaseIc)% Pl >c> $)2 >- c.

This case cannot occur. In fact, one finds,

M(a) < L (c) < 0 .

as in the preceding case, that
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But we have now, furthermore,

Therefore, the function M (_) is subject to the conditon that it is negative for p = +c and

p = -c. But it follows therefrom, that the equation

M(A- o
has either two roots or no roots between the values # = +c and p = -c, which is contrary to

the presupposition.

Also, two roots cannot exist between these limits. If we let a given x denote some real and

positive quantity which is smaller than c, then we know that - as a result of the presupposition-

L (x) is negative. But it is now true that

and then M (x) must also be negative for all positive x, which are smaller than c. Otherwise

M{-_),'-(K-K')_-h,;" ÷_ : M(z)- Z(K-K')-_,

and since we have here assumed K > K', then M (-x) must also be negative.

Consequently, n._o_oroots can occur here (if r I > r 2 > c) between +c and -c.

Case Ic5, that c 1 > Pl >P2 >c, cannot occur then.

B. 3 THE CONSTANT h POSITIVE

Now we go on to the second main division, namely to the case, that the constant h is positive,

and here make the same sub-divisions in reference to the roots.

Since now

L(k) = (K+ K')k ÷ h_k_ Jr oc , (i)
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I

I

I

I

and since further, L (_) must always be positive (or zero) for X >c in accordance with the nature

of the motion, then it follows that now _ can assume any large value. It is even necessary

that _ increase limitlessly with time. Since

or

then one finds, if we exclude the coinciding roots for the present, that X must be either

larger than the three roots

c, rI , r2

or smaller than allthree. But now X can never be smaller than c, so that X must always be

greater than the largest of these three roots or at least equal k_this root. Therefore, ifd A

is negative at the beginning of the motion, then k decreases untilthis largest root is reached.

Then d _ changes in sign and k grows continuously without limit. All motions which occur

with positive h are of this class. One is then concerned here only with the determination of

the minimum value of _.

The motion will be influenced, moreover, by the values of the roots Pl and P2"

Case IIa. r 1 and r 2 either imaginary, or real and smaller than c.

The lower limit of _ is here equal to c. Depending upon the values of Pl and #>2' we obtain

Case Has. Pl and P2 imaginary.

M 0_) is always positive, because M (_o) is positive. Then we must necessarily have

/_:-i'_ or -C .

The planet moves itself along the X-axis and coincides with one of the masses K or K' or

withdraws to infinity, depending upon the sign of d _ at the beginning of the motion.
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Case Haft. Pl and P2 real and greater than c in absolute magnitude.

If M (_) is here also positive, then the motion will be as in the previous case. On the other

hand, if M (p) is negative, then the planet can intersect the line K'K once and then departs

from K'K in ever greater spirals, since _ oscillates periodically between +c and -c.

CaseIIa_/. Pl >c>p2 >-c (orc>Pl >-c>p2)"

The planet makes one revolution around K' (or K) and then departs gradually to infinity,

since p oscillates periodically between the negative (or positive) X-axis and the hyperbola

# = P2 (or pl).

CaseIIaS. c> Pl >p2 >-c"

Here # oscillates periodically between the values Pl and P2" The planet intersects the line

K'K and then departs to infinity, oscillating periodically between both hyperbolas Pl and P2"

CaseIIb. r l>c>r 2.

The lower limit for )_ is here equal to r 1. The planet approaches the ellipse )_ = rl, touches

it tangentially and then departs to infinity, since )_ grows continuously. Here the constant

must be negative.

Both roots r 1 amd r 2 cannot be greater than c for positive h. One has, namely,

K+ _' [ (K+I<')z oc
r,=- z-'_ + _/ 4-h" h

K+K' _ CK+K')_
r_ - Zh V 4-hz In

If the roots are real, then r 2 must necessarily be negative.
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I
Case IIb_. The roots Pl and P2 imaginary or real and greater than c in absolute magnitude.

Here M (p) will always be negative because M (0) = ot is negative. The quantity # oscillates

I

I
I

I
I

I
I
I

I
,I

I

I

,I
.I

I

I

between +c and -c. The planet revolves, as it departs, about the masses K and K' in ever

greater spirals. The path is a type of externally running spiral.

Case IIbfl. One of the roots Pl and $)2' or both, smaller than +c or greater than -c.

This case cannot occur. Since r I > c according to the presupposition, and it is immediately

evident that the absolute magnitude of r 2 is greater than the absolute magnitude of r 1, then

r 2 must be negative and numerically greater than c. Therefore, the function L (x) does not

vanish for those x-values which lie between +c and -c, and remains negative for these values.

Now

from which equation it follows that M (x) must also be negative (and different from zero) for

positive x. Otherwise

M/-_)-M(_)-2(_-K')_,
and consequently M (-x) is also negative in the considered region. Therefore, none of the

roots Pl and #)2 can lie between +c and -c.

B. 4 h EQUAL TO ZERO

We now have

L(1)-(K÷K')),+

M#) --(K-K')/t+ ¢c

Here we have two cases to investigate in reference to the value of r, namely

I) r < c ; 2) r > c.
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Case IIIa. r<c.

The function L (_) remains positive during the motion. The quantity X can then decrease

continuously, until it has reached the value X = Co Then X begins to increase and grows to

infinity.

We have

r sm - "

K÷K i

Therefore, the absolute magnitude of p can, depending upon the conditions, become smaller

or larger than c.

Case IIIa_. IPl > c.

Here the function M (_) remains negative always, and since

then g must oscillate periodically between +c and -c.

The planet intersects the line K'K once and then departs to infinity in an externally running

spiral which winds about the line K'K. The case is similar to IIb_.

Case IIIa/L Ipl< c

In order that M (p) be negative, g must here be smaller than p. Then the quantity _ oscillates

periodically between p and -c. The planet intersects the line KK' onc.____eand departs to infinity,

since it oscillates back and forth periodically between the hyperbola and the positive X-axis.

The motion is very peculiar and unexpected.
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Case IIIb. r > c.

Here the lower limit for X will be equal to r, and the motion takes place outside the ellipse

The constant c_ must be negative (= - _1), and, according to the presupposition, one

has

Consequently, one must also have

| P= K_K _

I so that only one case remains to consider.

I
I
I

I

CaselIIb_. r> c. p> c.

M (p) always remains negative during the motion, and therefore oscillates periodically

between the limits +c and -c. The planet touches the ellipse r = c tangentially and then

departs to infinity in an externally running spiral which winds about the subject ellipse.

B. 5 TWO OR MORE ROOTS OF THE EQUATION R (4) = 0 OR THE EQUATION S (_) = 0
COINCIDENT. BOUNDED MOTIONS.

If two roots coincide, then bounded motion occurs. We recognize the following cases:

I A) r 1 = r 2 > c,

I B) r 1 > r 2 = c,

i C) r 1 = c > r 2,

D} r 1 = c = r 2.

I
I

I
I
il

Later we will investigate the different cases in which two roots of the equation S (#) = 0 coincide.

CaselVA. r=r l=r 2>c.

We have
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For the possibility of somemotion, it is necessary that h is positive or _ = r. I will later

analyze the latter case.

Consequently, we assume h positive.

Since the equation

CK+K'))L +h), 7- -l-oc- 0

possesses the double root _ = r, then

(K+K')_+ kP +_ : 0
and CK+K') +Zhr : 0
so that

K+K a
p - Zh

Of course the root must be negative, and consequently cannot be greater than c. This case

can thus only occur if h is negative, and then _ must be equal to r. It will be investigated

in the next paragraph.

CaseIVB. r 1> r 2=c.

Here there is

L(_) " (K+ K')c + kd _-,c = 0

and one has

_ _z&+_)(x-_,) .C_."-z-")_ =C_-4

If h is positive, then we must have _ > r 1, and we return to Case IIb.

Therefore,we assume that h is negative (= -hl). Then the quantity X must be smaller than r 1

and approaches the value X = c asymptotically with increasing time.
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On reference to the value of the root p, which can enter into the question here, we note that

M(._)< L(_) -- o

and- furthermore - that

M(-_.)- M(_)- Z(K-K')_< M(_) .

Consequently, M {_) is negative for _ = +c, and then either both roots p must be situated

between the limits +c and -c, or both must lie outside these limits (or be imaginary).

Case IVB_. p I and P2 imaginary, or real and greater than c in absolute magnitude.

M 0_) always remains negative during the motion. Then the quantity p oscillates periodically

between the limits +c and -c. The planet describes a spiral, which approaches the line

K'K asymptotically. This spiral is limited externally by the ellipse X = r 1.

Case !VBp. The roots Pl and P2 real and smaller than c in absolute magnitude.

Since now

McA---h,(p,-A('/_-p:),
then, in order that M (p) be negative, _ must be either greater than Pl' or smaller than/)2"

In the latter case # oscillates periodically between P2 and -c, in the former case between

Pl and +c. The planet describes a pendulum-like motion around K' or K and thereby approaches

the line K'K asymptotically.

CaseIVC. r 1=c 1> r 2.

As in the former case, one now obtains

_T

Since here X > r 2, then h must be positive. The semi-maj or axis of the ellipse can be optionally

large and approaches the value X = c asymptotically with increasing time.
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In reference to the value of the root p, which can enter into the question here, one obtains -

as in the former case - the inequalities

M(-d) <M(_) < L(c) = 0 .

Since now M (+ oe) is positive, then one finds that

p,>_ ; -c >'1o_.. .

Consequently, the function M (p,) cannot change in sign during the motion, but remains

negative, and then _ oscillates between the limits +c and -c. The motion is similar to that

investigated in Case IVB _, only here there is no upper limit for _.

The case

IVD. r 1 = r 2 = c

cannot occur for the same reasons as noted in reference to Case IVA.

I

l
I
I
I

I
I

I

Now we come to those cases in which various roots of the equation

da-_t)_ = 0

occur. The function S (g) = 0 has four (4) roots, and all four can appear as limiting points of

the allowable region. Therefore we have to investigate the following cases:

I

I

I

K) Pl = P2'

L) Pl = c ,

M) Pl =-c,

N) P2 = c ,

O) p 2 = -c.

Since it can happen that three (3) roots coincide:
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I •

i • Cas___.£VK..___.Pl = p 2"

Here one tus L:tsst

I upon the motion, in other respects. Now we have

l sL,._=_(/-o"_h&-_? ,
2 2

from which it follows, that either h is positive and then _ = c

l ase the motion takes place along the X-axis, or h is negative (= -hl).

case. It is

'
I Since• p " le root, then one has

K-K' -2..h,_ = 0

I s o that K- K I

| ' "

i If one inserts this value in the first equation, then

which relation must consequently exist with coefficients so that _ is negative (=-_1).

Here one must assume that the root p lies between +c and -c, because it can have no effect

1
must be true , in which

Let us consider this

(1)

(2)

We have further

L('),') = (K+ K')'L h,'X2"

and the roots of the equation L (_) = 0 are

I

1
The case p = p can then also occur and will be investigated later.
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If the quantity (K - K')2-4 _lhl , which is equal to zero, is now subtracted under the square

root, then one obtains_.

r,._ 2..h, Z hI
' (3)

Now

.I

I

I
I
I= I<- K' e Zk:' -2,]K K' =

:, -.' +z_ (_-_-) < K-_', I

< a . (4) I

Consequently, we have to consider two cases here:

and consequently one has

K-K l
r,.<

Zh,
Only one root r can then be greater than c.

CaseVKa. r 1< c.

Here it is necessarily true that

_t---- C,

the motion occurs along the line K'K, and with increasing time the planet approaches the

point _ = p without limit, where p is determined on this line from (1), and this can be done

from one or the other side.

CaseVKb. r 1>c.

The motion is bounded by the ellipse k = r 1. The planet oscillates between this ellipse and the

line K'K, since it gradually approaches the hyperbola _ = p asymptotically with constantly

increasing or constantly decreasing p.
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CaseVL. Pl =c> #)2"

The planet approaches the line K'oo asymptotically.

There is

(,K-K')_ + hc_ + _: = 0

and one has

If h is negative, the p must oscillate between p,
1

in § 2.earlier

(5)

and -c, and we return to the case treated

If h is positive, then it follows that one must always have g > $}2" The planet touches the

hyperbola # = P2 once and then approaches the negative X-axis (or a line parallel to it)

asymptotically.

Now as for the roots r 1

positive h. In fact, according to (5)

L(_ -(K+K')_+ h__+ _ > 0

and one has

for all _ greater than c.

and r2, it can be proven that they cannot be greater than c, for

Consequently, the function L(X) does not change in sign during the motion, but always remains

positive. The quantity X takes its minimum value X = c once. The planet intersects the line

KTK once and then asymptotically approaches a line parallel to the X-axis.

1
If P2 < -c, then the motion occurs on the X-axis.
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Case VM. Pl =-c >p2.

The planet approaches the positive X-axis asymptotically.

One has

Since p < c, then h must be negative (= -hl).

M(-_)--(K-K')_-he" e

so that a is positive.

Consequently,

Furthermore

L(k) = (_K')l -H,

and L (c) is then positive.

r,'_ > r_ .

However, since L (+__} is negative, it is obvious that

The motion is bounded by the ellipse h = r 1. The quantity X oscillates between X = r 1 and

A = c. The negative X-axis - beyond c - can be crossed once and the traiectory curve then

approaches the positive X-axis asymptotically in pendulum-like swings with constantly

increasing D- values.

Case VN. Pl >p2 =c"

Now one has

s(_)- z(_-_)_h(_-p)(_+_

Here h must be negative (=-h). Consequently,

_(4- (K-K')_-h,__

Hence it follows that L(c) is positive,

rI _ c > r2.

_'_ -- 0 .

and since L(+ _) will be negative, then

The case is in accordance with the previous VM, only now the planet approaches the negative

X-axis asymptotically in this case.
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Case VO. Pl >p2 =-c"

I The planet approaches the positive X-axis asymptotically. In other respects, this case cor-

responds to VL.

I
I

l

l

I

I

!

CaseVP. Pl = P2 =c"

We have

M(_)= (K-K') _ 4-he"4--

M'(4 = K-K' 4- Zhc

so that

K-K e
C.= ,)

Zh

and hence it follows that h must be negative (h = -hl).

As in Case VK, one finds now

I
i
I

_'] : (_-_:K/_')'r_ Zh,

so that - as in the named case -

r 2 _ C.

I

I
I

Otherwise one finds that here always

rl_ o.

The motion is bounded by the ellipse r 1

Case VN.

= c, and the trajectory curve will be the same as in

I

I

I

Finally, in Case VQ
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Here
I

so that h is positive.

that

The same expressions for r 1

,_
Zh

and both roots are negative.

and r 2 apply as in the former case, SO

The function L (k) does not change its sign during the motion and remains positive, and since

") ,dt

the quantity X diminishes once to its minimum value X = c. Then the trajectory curve crosses

the line K'K once, to approach, asymptotically, a line parallel to the X-axis.

This case is similar to VM.

Concerning the remarkable trajectory shape which can occur in this problem, those appearing

in IIa ?/and IIa5 are perhaps the most peculiar, and they even appear very improbable.

Therefore, I will investigate them quite completely.

Here we have in (IIa)

h positive,

r 1 and r 2 either imaginary or, since they are real,

smaller than c.

I will investigate those values of the root p, which can then occur.
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One has

and

_,_ --(K+K')+--_/(K+K'i_--4-_:h
J_ Zh

e'}e,-" -(K-_')+-¢C_-K')_-_zh

First, we intend to assume that r 1

(K+K')_< +_H .
and r 2 are imaginary. Then one has

c_ must therefore be positive, and - further - one has

(K- K')" < #_h .

Then the roots Pl and P2 are imaginary, and we find ourselves under the same conditions

as in Case IIac_.

Second, we assume that r I and r 2 are real and smaller than Co

Consequently,

and

or

or

CK+K')_ _ 4-cch

Zhr_<Zhr, =_(K+K") z-¢_h -(K4-K') <Zch

(K+K'-I-ZcN') _" _ (K+K'):-÷och > 0

,÷ck (K+K') Jr-÷._'h _">-÷_ch ,

where c_ can be negative, One can divide out by 4h and consequently obtain

(K+K')c,4-h__ >-¢ ,

which one can also write in the form L (c) > 0.
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The Forms IIa7and IIa5 presuppose thatp I and P2 can assume real values, and that one of

these values or both are smaller than c in absolute magnitude.

I

t
For the reality of the roots Pl and P2' the above inequalities present no obstacles in its

way. If both roots should be smaller than c in absolute magnitude, then one has

K-I<' +,](K-I<')z'-÷_ch - < Zc.h
or

I
I
I

and hence one obtains - after some reduction
III

-(K-_')_+h_ _ _: > _ _ It
which one can also write in the form M (-c) > 0. It is now evident that

J
m(-_.')- L(_.)- z i<_ ,

and nothing prevents us from having M (-c) > 0 for L {c) > 0. Then both roots Pl and P2 I

can be real and numerically smaller than c.

We now consider the corresponding differential equations

- j2 (x--__)h(_-_,_(z-_,_

where

Cx__A]dx

In order that the quantities under the square root become positive now, the quantities X and

must obviously fulfill the following inequalities

p,>--z_>_& .
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We establish

__ _c_+__Cx-_,_C_-_)
dt l_-/_

The quantities under the radical sign can never become zero, and the auxiliary qu'mtiLi(.s

W 1 and W 2 consequently increase constantly with time.

Now

l d-_,

I _ ;,/<_',-_-'_-_
clvu_

I
and hence one obtains-through integration

I 2.

|

I
I

1
I
i

The planet oscillates between both hyperbolas Pl

constantly to infinity.

and P2 and departs simultaneously and

Consequently, the case IIa5 exists. As for Case IIafl, it appears again in IIIafi.

B. 6 PEP_ODIC MOTIONS

Motions which are periodic in time, can occur in the cases treated in § 2, as often as the

condition § 1 (10) is fulfilled. Moreover, the motion will be periodic, whenever the body

moves along a curve

_, = constant,
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and also under the conditions when the trajectory curve has the equation

if,= constant,

We want to firstconsider these cases.

Case Via. )_ = constant.

Since

it is evident that )_ is either equal to c, or coincides with a root of the equation

L().)-- . (2)

In the first case, the body moves along the line K'K and we already know that-in so doing-

only three (3) cases can occur, either that a collision with one of the attractive masses occurs,

or that the planet approaches a point on the line K'K asymptotically (VKa) or that the planet

departs to infinity. Consequently, we can pass over this case.

There still remains the case, that X coincides with a root r I and r 2.

If r I > c > r 2, then it is not possible that 1 coincide identically with r 1. Namely, we know,

that libration between r 1 and c must then occur for negative h in )_ (Ib) and )_ increases to

infinity for positive h (IIb).

If r 1

for positive h. Thus, we have

> r 2 > c, then h must necessarily be negative, because at least one root must be negative

If we exclude the case h = c, then here a libratory motion between r 1

and X can only remain constant under the single condition, that

(3)

and r 2 always occurs,

rI = r2 .
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Since a double root occurs here, then

(.K+ K') _ -'t'mh =0

and it follows that

| (K-K')"-÷_h < o ,
so that Pl and P2 become imaginary. The quantity _ oscillates accordingly between +c

and -c, and the motion proceeds along the ellipse ;_ = r, where now (according to IVA)

K+K'

r - 2,hi

A singular solution of the differential equation (3) is always

"k=r o

or _ = r 2. However one finds that the second differential quotient of X with respect to time

then has a finite value. However. if _= r denotes a double root, then not only the second

differential quotient but also all differentials of higher order for h = r will vanish.

Case VIb. # = constant.

If we here exclude the cases _ = +_c, then the differential equation
ii

is satisfied only through the values # = P l = P2 = p' if ;_ should be constant.

(6)

VIb_. Then one has

for negative h (= -hl), and here # = p is an unstable solution.

Because p is a double root, one has

I p =- <_.

I
2_h,

and therefrom

(K-K')'- ÷_h = 0 .

(7)

(8)
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Furthermore

or - according to (8)

rl t -r%

Then we have

p _,_
Hence it follows that r

1

rI > c > r2.

Now one has

-CK+_')ZJ(_+K'):-_.h
2h

-(K_-K')*--7-_VTP-_(VT-_)_
Zh Zh,

and r 2 cannot bot_._hbe greater than c.

L('k): N,(,-,-1.')(K-r.,.')

and k oscillates between r I and c.

(9)

However, it is possible that

In this case the planet will perform a pendulum-like motion along the hyperbola

Whenever K = K', then p = 0, and the planet moves back and forth along the Y-axis to both

sides from the coordinate origin.

VIbp. If h is positive, then one obtains - for coinciding p - values

K -K'

_- - zh,
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t

Here both roots r are negative. The function L(4) remains positive during the motion. The

magnitude X increases to infinity.

In this case the planet moves along the hyperbola

K-K'

to infinity.

Periodic trajectory shapes can also occur whenever the fundamental periods o)12 and w22
have such values that

where m I and m 2 denote whole numbers. Since one can select w12 and w22 as positive, the

numbers m 1 and m 2 are of different signs. Consequently, we write - as a better choice -

I'_ I L.kil2" -- l'rl Z IJ_Z2" = 0 _ (10)

where m I and m 2 now denote positive numbers. Then one obtains the value

ZT = Zrn,co,, - Zm_.coa, (11)

for the corresponding period.

If one assumes a specific value for the integration constant h - among the values possible in

each case - then the other integration constant _ will satisfy the equation (10) for an infinite

series of (discrete) values, and vice versa. The periodic cases then comprise a two-fold

infinite set.

The smaller the numbers m I and m 2 become, the "simpler" will the corresponding periodic

motion be. Consequently, the trajectory curve will take the simplest form whenever m 1 =

m 2 = 1. In general, one can also select the integration constants so that this case occurs.

As- for example- in Ib_ or Ic_. Then we obtain a periodic curve which does not cross itself.

But in Case Ibm, such a choice will hardly be possible. It appears that the lowest values for

m 1 andre 2 are herem 1 =2, m 2 =1.
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If we consider the quotient

LOI_.

which we can assume smaller than unity - since otherwise similar conclusions apply for

_22/_12 - then a periodic motion will occur as often as v denotes a rational number. Since

now many rational numerical values are present always without limit inside an arbitrarily

small section, as small as this section is selected, so will the periodic trajectory curves,

among all trajectory forms which can occur for 0 < v < 1, be distributed with uniform density.

Consequently, one needs only to establish an infinitely small variation of v, in order to change

from an arbitrary periodic trajectory curve to an adjacent one which is not periodic, and vice

versa.

According to Cantor, one terms an infinite set of things as enumerable, if one can number

the elements with 1, 2, .... , n... so that no element will be omitted. The rational numbers

between 0 and 1 constitute a numerical aggregate; in fact one can write them in the following

order

1 1 2 1 3 1 2 3 4 1 5

so that one writes down-after each other-those numbers whose denominator is 2, 3, 4, 5, 6,

etc., and-for each denominator-the values 1, 2, 3, etc. are assigned to the numerator, with

the omission of those values whose numerators and denominators are relative prime numbers.

The periodic trajectory curves comprise a numerical aggregate; on the other hand, this is not

the case with the non-periodic trajectory curves. Hence the aggregate of the latter is -

according to the terminology of Cantor - of higher order than the aggregate of the periodic

curves.

If we consider the non-periodic trajectories, then we know, according to § 2 in the second

section, that one can consequently develop the distances r and r' (of the planet) from the

attracting masses - in a Fourier series of the form
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|
I

>- C_I,_=_(_i_ + L_J

These series are uniformly convergent I and u 1

and of the form

1 I u_ - n,£ + T, ,

(12)

and u 2 designate linear functions of time

(13)

I

I
I
I

I

I
I

I
I

I

I

I

where

"lr(.i.)l_

I1°---- _0.

rill, =" "_
(14)

For these series one can make some interesting observations, which appear to be of great

interest for the solution of the problem of three bodies. In order to obtain the series (12),

one can,namely, make use of an approximation method similar to that customary in the

"perturbation theory". If we keep in mind, for example, the "satellite" of Case Ib6, in

which the moving body must always remain in the vicinity of the mass K, and we assume the

mass K' as relatively small; then in order to obtain the expression for the coordinates we

can make use of a development for the potential of the small mass K'. With the determination

of the successive approximation values of the coefficient Cil, i2' one would then (probably}

have to contend with the difficulties developed through the so-called small divisors - of which

more will be said in the following - which are of the form iln 1 + i2n2, and the series in the

different approximations would not be uniformly convergent, although this is the case with

the real series (12). Once can even say in advance, why such difficulties must be encountered

here. The explanation appears to lie in the fact that - as was proven in § 3 in the second

section - the distance r from the body K in this case possesses no lower limit different from

zero. For this reason, there exists no average value for this distance in the sense that one

uses this concept in the perturbation theory.

1 One finds the proof for this by Weierstrass elsewhere.

B-37



In fact, it appears to me possible that one has to look into the perturbation theory for the

explanation of the remarkable convergence condition of the series, under similar circum-

stances.

B. 7 CLASSIFICATION OF THE DIFFERENT TRAJECTORY FORMS, WHICH CAN

OCCUR WITH THE ATTRACTION OF A BODY TO TWO FIXED CENTRES

1) Straight line motion: The planet moves along the line K'K or its extension.

The planet moves in the initial direction, until it coincides with one of the masses.

Iac_, Iafl, IIac_ among others;

or the planet moves in the initial direction, until it reaches a certain point; then turns about

and coincides with a mass after some time. Ia_, Ia5 among others;

o__rrdeparts to infinity along the X-axis. IIac_;

or approaches - without limit - a point situated between K' and K, without reaching it in a

finite time. VKa.

2) Lemniscate motion: If the motion is not nearly periodic, the trajectory curve fills the

entire space enclosed within an ellipse with uniform density,

Figure 2

I

I

Iaol, i

I

I

I

I

I

Ibm, Ibfl. Figure 2. I

I

Figure 3 I

3) Satellite motion: The planet moves within a distinct space, in which one mass K or K'

is located. The boundary of this space constitutes part of an ellipse and a hyperbola. The

trajectory curve is either periodic or fills the space in question with uniform density. Ib:_,

IbS. Figure 3.
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4) Planetary motion: The planet moves (as an outer planet) in a space enclosed by two

confocai ellipses. The trajectory curve is either periodic, in which case it touches both

ellipses, or it fills the space in question with uniform density. Icq, Icfl. Figure 4.

Figure 4

I 5) Diverging pendulum-motion: The planet departs to infinity from either centre, while

I
it oscillates back and forth in ever larger pendulum-like swings between both branches of a

hyperbola to both sides of the X-axis. IIa?, IIIafl. Figure 5.

I 6) Hyperbolic sinusoid-motion: The planet departs to infinity, while it oscillates back and

I
forth periodically between two confocal hyperbolas. IIaS. Figure 6.

I 7) Diverging spiral-motion: The planet departs to infinity, while it performs ever larger

spirals around the line K'K. IIafl, IIb_, IIIac_, IIIb_ Figure 7.

I
I

I

I
I
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8) Convergent spiral-motion: The planet approaches the line K'K asymptotically in ever ' l

smaller spirals, without reaching it in finite time. IVB_, IVC. Figure 8. l

',
Figure 8

9) Converging pendulum-motion: The planet approaches either a hyperbola (VKb) or the I

X-axis asymptotically in pendulum-like swings on both sides of the X-axis, without reaching

these limits in finite time. VKb, IVBfl, VM, VN, VP. Figures 9 and 10. l

/ ,,I |
• , f!

Figure 9 Figure 10 l

10) Asymptotic-straight line motion: The planet approaches a line parallel to the X-axis

asymptotically. VL, VO. Figure 11.

I

s _

I

K !

j,/
/

/

r -I _K

Figure 11

11) Elliptical motion: The planet moves in a certain direction along an ellipse, whose

equation is

K4-K'

Zh,
Via.

B-40

I

I
I
I

I
I
I
I



I •

I • 12) Hyperbolic motion: The planet moves along a hyperbola

I either so that it departs to infinity along the hyperbola. Then the focus of this hyperbola lies

i in the _ mass (K). VIbfl;

or so that it oscillates back and forth pendulum-like along the hyperbola around the X-axis.

I Then the focus of this hyperbola lies in the smaller mass (K'). VIb_. Figure 12.

I All forms of motion considered here (with the exception of VIbo:) are stable, and one cannot

I change the integration constants (h and _) from one form to another, with an infinitcsimally_small variation.

I

I

I Figure 12

I
I
I

The names (introduced above by me) for the different motion forms do not always give -

with certainty - an adequate expression for the corresponding trajectory curves. However,

they appear to me to be not too confusing. For detailed description, I refer to the preceding

paragraphs.

I In our classical work on the elliptic integral, Legendre has devoted a detailed investigation
1

of the problem of the attraction to two fixed centres.

I

I
He has limited himself therein to the case that h is negative, in which case as we have seen,

the trajectory curves are finite. He has treated Numbers 1, 2, 3, 4, 8, 9, 11, 12 of the

I

I
1 "Trait_ des Fonctions elliptiques" T.I.
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motions possible here. In reference to the converging pendulum motion Number 9, however,

he has only treated the case that the planet approaches the X-axis asymptotically (Fig. 10}.

He appears to have overlooked the general case (Fig. 9}, that the planet approaches a

hyperbola asymptotically. It is noteworthy that the important characteristic of the non-

periodic trajectories, to fill the admissible region with uniform density, were not unknown

to Legendre. At least he mentions this explicitly in reference to the planetary motion

Number 4.

The straight-line motion was treated by Legendre under the supposition that the planet can

pass through the masses K and K'. I have considered it advisable to let the motion terminate

with the coincidence, because the physical sense of the motion and the validity of the differ-

ential equations cease to apply here.

In the treatment of this problem, Legendre relied upon his profound investigations of the

elliptic integrals. However, the treatment was thereby unnecessarily detailed and difficult.

On the other hand, discussion of the motion progresses - as we have seen - almost without

calculation work and without detailed formulae. It would provide no advantage, if one

were to introduce the elliptic functions instead of the integrals of Legendre. This is super-

fluous for the discussion of the forms of motion and it is only a greater detour in the com-

putation of the value of the coordinates at an arbitrary time, since one does not hereby

obtain the coordinates through the time, but the time is expressed through the coordinates.

But through the formula (12), the coordinates will be expressed directly as functions of the

time and the coefficients in the series can be calculated always and with relative ease.

B. 8 EXAMPLES

Although no examples are known in nature, in which the motion of a body is determined by

the attraction of two fixed centres, whenever we are concerned with three bodies which are

mutually attracted according to the Newtonian law, in certain cases it may be justifiable to

assume that the problem of the attraction of two fixed centres can approximately lead to an

understanding of the trajectory curve.
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Such a case would be present, for example, if one were to investigate the motion of a smaLL

body which passes through a double-star system with high velocity.

Also, in our planetary system, examples are not lacking in which it would be possible to obtain

an approximation of the true trajectory. For example, if one considers the system which

consists of the sun, a planet and a satellite belonging to it, then the angular velocity of the

planet around the sun can be considered as very small whenever the satellite lies sufficiently

near the planet, and one could then consider the sun as stationary at least for a short time,

and the satellite as attracted by two fixed centres. If we are dealing with the motion of a

small planet under the attraction of the sun and a large planet - Jupiter or Saturn -, then

the coordinates of the planet can be generated according to the power of the angular velocity

of the large planet (as will be shown in one of the following sections) and one will thereby be

led to an approximation method in which the problem of the attraction of two fixed centres

would give the first approximation. Of course, the convergence of this approximation will

not be investigated; nevertheless it may be of interest to undertake an examination of the

trajectories which one would get in the first approximation.

Suppose that a body is found on the connecting line K'K between the sun (Ix') and a planet (K'),

and that at the beginning of the motion this body is thrown out with a velocity perpendicular

to this line, whereby K' and K will be considered as stationary; its motion should be inves-

tigated under the assumption that the body will be attracted by K' and K according to the

Newtonian law.

Consequently, we have to determine the integration constants h and _, and then to calculate

therefrom the roots r 1, r 2, Pl' P2"

According to formula (6) and (5*) § 1, one has the following formulae for the computation h and

, CK+K') ÷
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= - (K+K'_ -h

or

-_- z(J'--/.Y) -t-(,.K-F-,"_,,_"kh/.
I

In the above, we have to insert the values Xo, /_o' Xo

in order to obtain the values of h and _ o

(2)

(2*)

t

and/_o for the inception of motion,

4 I

I
I

I

We select the unit of length so that c = 1. The distance K'K is then equal to 2. If the body

lies in the interval a from K v, then

ko- t i /% -- i - a . (3)
! !

In order to obtain the values of the differential quotients _o and go , we make use of the

equations I § 7 and consequently obtain - since according to the given assumptions

I

"x.o = 0

the following equations:

0 =/h dk, + k, d_,

or according to the values obtained for

Then

'-- t-Ct-o)'- N-t_1,

_' =/_' = 0

o and/'to

(4)

I
I
I

I
I

I
I

I
I
I

and

)-0' _0e

V_____ (_*_ I
If one inserts the values (3), (4) and (4*) in 1 and 2, then I

_ ,z _ K'h = _o a a _ (5)
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- _: - (K,K')(I-.') + 6(1-aY. <_*_

Whenever the values of the masses K and K', the distance a and the initial velocity Yo'

are given, then the values of h and _ are hereby determined.

In reference to a, I will now make two different assumptions, the one corresponding to the

case that we are dealing with a planet which moves between the sun and the disturbed planet,

the other corresponding to a satellite case.

However, I note first that the equation (5*) can be written in the following form:

where M(p) has the same meaning as in the previous paragraph. Consequently, one of the

roots (Pl' P2 ) is equal to l-a, namely equal to that value which # has at the beginning of the

motion. Then the one boundary of the admissible region for the trajectory curve goes through

that point in which the trajectory curve (at the beginning of the motion) crosses the line K'K

at right angles.I

I In order to obtain a simple planetoid-like example, we set

a = 1. (1)

Now according to (5*)

: 1 -K-KI

I
h : -__:_ • _]" . _

We determine the initial velocity Yo in such a way that the planetoid would move in a circle

about the whenever the attraction of thesun (K} planet K' ceases.

following paragraph -

I ,_" K_.. K (7)
_0 : r- ?

Then - as one finds in the

I

I This would approximately describe a small planet which is located in the mean distance
of the asteroids, and which will be disturbed by Jupiter.

I
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so that

h - K K e . (8)
Z

Now in order to find the boundary curve of the admissible region, one has to calculate the

roots of the equations

and

Mbq--0
according to the previous paragraph.

_A(/t)- (K-K')/_4-h_._"

Since c_ = 0, we simply obtain

or

M(,)-(_-K')/_-(-_K+K')4_ .

Then we have

Z(K÷K')_
I,-Z = - K+ZK'

rj 0

P,= .z(_:-k:')
K+2K j

According to the notation of the preceding paragraph, one has

r,>o. >r_

and we find ourselves in Case Ib7 in § 2.

Now we find the following limits for _. and _ -
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B

C

A
Figure 13

.. _,_ _.
K-FZK'

o >_./_ >_-I.

The motion is a libratory motion. For/_ = 0, one obtains the Y-axis AO B. The ellipse

).= Z ('K+K')
K'I-Z,K'

has approached the semi-major axis equal to 2, because the mass K' is small. The motion

occurs inside the region ABC, which is filled by the trajectory curve with uniform density.

It is noteworthy that for each value of K' the one boundary of the admissible region will

always be formed from the Y-axis.

and consequently

Let us now pass on to the second case, that the small body very near to the planet K' is

thrown out perpendicular to the line K'K. If we assume that the body possesses such an

initial velocity that it would move in a circle about K' if the attraction of the sun could be

neglected, then one has

a

K__:Lh--
Z-: 2._ '_ (9)

where _now denotes a small quantity.

Will the body move about K or about K'? In order to investigate this, we must calculate the

roots rl, r2, Pl' P2" Nows
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t_(_,)--(K-_:')_+ h__ -I.-_.
M(1-o'_---(_,-K")(_-a')-t.-h(_-o_) + _ - 0

so that - if M(1-a) is subtracted from M(_)-

--[K-K'+hU -I-ol]
For the one hyperbola which bounds the region inside which the body can move, the semi-major

axis is equal to 1 - a. Now the other hyperbola is located near K, so the body must move around

K' or else around K. The condition for the fact that the body will be a satellite around K' is

_ K-K'+h(_-_ < £-a
h

or if one inserts the value for h,

K' K\
--_ _ • (_0)
Cl _-Q

For the earth's moon -

I
I
I

I
I

I
I
I

000 K'
I

K - 3ZO I

Z,OOa = i }
and one finds that here

K' K

aT. __Q

and consequently a body which would be found (under the mentioned conditions) in the

interval from the moon, will move around the sun and not around the earth, if both were

considered stationary. This is true also, if one makes use of the synodic instead of the

sidereal angular velocity of the moon.

This seems somewhat surprising at first sight. Perhaps one would expect that the body would

surely move around the earth. However, with more careful reflection one finds that the re-

sult cannot be otherwise, since one has here neglected the attraction of the sun on the earth.

In fact the direct attraction of the sun on the moon is almost twice as large as the direct

attraction of the earth upon the same body. The inequality (10) may be simply stated: that

the body moves around the sun whenever the twofold value of the attraction of the sun is

greater than the attraction of the planet.
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Consequently, one would not be able to use the attraction of two fixed centres as a first

approximation for our earth's moon.

If one were to select - instead of this - for example the inner Mars' moon Phobo_..___s,then

one would find that the attraction of Mar._._s on Phobos is 200 times greater than the attraction

of the sun on this satellite. For the Neptune satellite, the attraction of the major planet is

more than 8000-fold of the direct attraction of the sun. In this case, one can then consider

the sun as stationary in the first approximation.
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